Ligustrazine Protects Homocysteine-Induced Apoptosis in Human Umbilical Vein Endothelial Cells by Modulating Mitochondrial Dysfunction

2019 ◽  
Vol 12 (6) ◽  
pp. 591-599 ◽  
Author(s):  
Xuesong Fan ◽  
Enshi Wang ◽  
Jianxun He ◽  
Lei Zhang ◽  
Xiaoli Zeng ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Zhimin Zhang ◽  
Congying Wei ◽  
Yanfen Zhou ◽  
Tao Yan ◽  
Zhengqiang Wang ◽  
...  

Homocysteine- (Hcy-) induced endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury, while the proposed molecular pathways underlying this process are unclear. In this study, we investigated the adverse effects of Hcy on human umbilical vein endothelial cells (HUVEC) and the underlying mechanisms. Our results demonstrated that moderate-dose Hcy treatment induced HUVEC apoptosis in a time-dependent manner. Furthermore, prolonged Hcy treatment increased the expression of NOX4 and the production of intracellular ROS but decreased the ratio of Bcl-2/Bax and mitochondrial membrane potential (MMP), resulting in the leakage of cytochrome c and activation of caspase-3. Prolonged Hcy treatment also upregulated glucose-regulated protein 78 (GRP78), activated protein kinase RNA-like ER kinase (PERK), and induced the expression of C/EBP homologous protein (CHOP) and the phosphorylation of NF-κb. The inhibition of NOX4 decreased the production of ROS and alleviated the Hcy-induced HUVEC apoptosis and ER stress. Blocking the PERK pathway partly alleviated Hcy-induced HUVEC apoptosis and the activation of NF-κb. Taken together, our results suggest that Hcy-induced mitochondrial dysfunction crucially modulated apoptosis and contributed to the activation of ER stress in HUVEC. The excessive activation of the PERK pathway partly contributed to Hcy-induced HUVEC apoptosis and the phosphorylation of NF-κb.


2016 ◽  
Vol 14 (1) ◽  
pp. 399-405 ◽  
Author(s):  
XU-LIANG HAO ◽  
YA KANG ◽  
JIAN-KUAN LI ◽  
QING-SHAN LI ◽  
EN-LI LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document