Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries

Nano Research ◽  
2018 ◽  
Vol 12 (9) ◽  
pp. 2218-2223 ◽  
Author(s):  
Peihao Li ◽  
Yong Yang ◽  
Sheng Gong ◽  
Fan Lv ◽  
Wei Wang ◽  
...  
2020 ◽  
Vol 44 (5) ◽  
pp. 2046-2052 ◽  
Author(s):  
Fenqiang Luo ◽  
Xinshu Xia ◽  
Lingxing Zeng ◽  
Xiaochuan Chen ◽  
Xiaoshan Feng ◽  
...  

Highly dispersed ultra-fine few-layer MoS2 embedded on N/P co-doped bio-carbon composite (MoS2-N/P-C) was synthesized and it delivers excellent high-rate long term cycling performance (175 mA h g−1 after 2000 cycles at 5 A g−1).


2021 ◽  
Vol 11 (24) ◽  
pp. 12007
Author(s):  
Hyeon-Su Yang ◽  
Si-Wan Kim ◽  
Kwang-Ho Kim ◽  
Sung-Hwan Yoon ◽  
Min-Jae Ha ◽  
...  

The heteroatom doping of carbon materials can significantly improve the electrochemical performance of sodium-ion batteries. However, conventional doping techniques involve more than two steps, making them unsuitable for scale-up. In this study, an S and P co-doped carbon material is synthesized using a simple, one-step plasma-in-liquid process. The synthesized material consists of abundant macropores, which can improve the electrochemical properties of sodium-ion batteries. When the synthesized anode material is applied to a sodium-ion half-cell, the cell exhibits a remarkable cycling life of 3000 cycles at a high current density of 10 A g−1, with a high reversible capacity over 125 mAh g−1. These results indicate that S and P co-doped carbon materials are promising candidates as anodes for sodium-ion batteries, and the plasma-in-liquid process is an effective strategy for heteroatom co-doping.


2017 ◽  
Vol 19 (26) ◽  
pp. 17270-17277 ◽  
Author(s):  
Yubin Niu ◽  
Maowen Xu ◽  
Chunlong Dai ◽  
Bolei Shen ◽  
Chang Ming Li

Na6.24Fe4.88(P2O7)4 is one of the intensively investigated polyanionic compounds and has shown high rate discharge capacity, but its relatively low electronic conductivity hampers the high performance of the batteries.


2021 ◽  
Vol 53 ◽  
pp. 26-35 ◽  
Author(s):  
Chengzhi Zhang ◽  
Donghai Wei ◽  
Fei Wang ◽  
Guanhua Zhang ◽  
Junfei Duan ◽  
...  

2021 ◽  
Author(s):  
Ni Wen ◽  
Siyuan Chen ◽  
Jingjie Feng ◽  
Ke Zhang ◽  
Zhiyong Zhou ◽  
...  

The double-carbon confined CGH@C/rGO composite is designed via a facile in situ hydrothermal strategy. When used as an anode for sodium-ion batteries, it exhibits superior reversible capacities, high rate capability, and stable cycling performance.


2017 ◽  
Vol 23 (57) ◽  
pp. 14261-14266 ◽  
Author(s):  
Lei Zou ◽  
Yanqing Lai ◽  
Hongxing Hu ◽  
Mengran Wang ◽  
Kai Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document