Extending the operational lifetimes of all-direct electron transfer enzymatic biofuel cells by magnetically assembling and exchanging the active biocatalyst layers on stationary electrodes

Nano Research ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 767-775 ◽  
Author(s):  
Katharina Herkendell ◽  
Andreas Stemmer ◽  
Ran Tel-Vered
Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 9 ◽  
Author(s):  
Dalius Ratautas ◽  
Marius Dagys

Direct electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an additional electron mediator. More than 100 enzymes are known to be capable of working in DET conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby, to the best of our knowledge, we present the first review concerning such nanocatalytic systems involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases, provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using DET-capable oxidoreductases, and highlight common strategies and challenges that are usually associated with those type catalytic systems. Finally, we end this paper with the concluding discussion, where we present future perspectives and possible research directions.


2016 ◽  
Vol 4 (22) ◽  
pp. 8742-8749 ◽  
Author(s):  
Keisei So ◽  
Yuki Kitazumi ◽  
Osamu Shirai ◽  
Koji Nishikawa ◽  
Yoshiki Higuchi ◽  
...  

H2/O2biofuel cells utilizing hydrogenases and multicopper oxidases as bioelectrocatalysts are clean, sustainable, and environmentally friendly power devices.


2013 ◽  
Vol 87 ◽  
pp. 323-329 ◽  
Author(s):  
Sidney Aquino Neto ◽  
Emily L. Suda ◽  
Shuai Xu ◽  
Matthew T. Meredith ◽  
Adalgisa R. De Andrade ◽  
...  

ACS Nano ◽  
2015 ◽  
Vol 10 (1) ◽  
pp. 324-332 ◽  
Author(s):  
Rita A. Blaik ◽  
Esther Lan ◽  
Yu Huang ◽  
Bruce Dunn

2008 ◽  
Vol 112 (26) ◽  
pp. 9956-9961 ◽  
Author(s):  
Federico Tasca ◽  
Lo Gorton ◽  
Wolfgang Harreither ◽  
Dietmar Haltrich ◽  
Roland Ludwig ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5197
Author(s):  
Nabila A. Karim ◽  
Hsiharng Yang

Enzymatic biofuel cells (EBFCs) is one of the branches of fuel cells that can provide high potential for various applications. However, EBFC has challenges in improving the performance power output. Exploring electrode materials is one way to increase enzyme utilization and lead to a high conversion rate so that efficient enzyme loading on the electrode surface can function correctly. This paper briefly presents recent technologies developed to improve bio-catalytic properties, biocompatibility, biodegradability, implantability, and mechanical flexibility in EBFCs. Among the combinations of materials that can be studied and are interesting because of their properties, there are various nanoparticles, carbon-based materials, and conductive polymers; all three have the advantages of chemical stability and enhanced electron transfer. The methods to immobilize enzymes, and support and substrate issues are also covered in this paper. In addition, the EBFC system is also explored and developed as suitable for applications such as self-pumping and microfluidic EBFC.


Sign in / Sign up

Export Citation Format

Share Document