Improved tolerance of Escherichia coli to oxidative stress by expressing putative response regulator homologs from Antarctic bacteria

2019 ◽  
Vol 58 (2) ◽  
pp. 131-141
Author(s):  
Seo-jeong Park ◽  
Sangyong Lim ◽  
Jong-il Choi
Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Masaaki Onda ◽  
Katsuhiro Hanada ◽  
Hirokazu Kawachi ◽  
Hideo Ikeda

Abstract DNA damage by oxidative stress is one of the causes of mutagenesis. However, whether or not DNA damage induces illegitimate recombination has not been determined. To study the effect of oxidative stress on illegitimate recombination, we examined the frequency of λbio transducing phage in the presence of hydrogen peroxide and found that this reagent enhances illegitimate recombination. To clarify the types of illegitimate recombination, we examined the effect of mutations in mutM and related genes on the process. The frequency of λbio transducing phage was 5- to 12-fold higher in the mutM mutant than in the wild type, while the frequency in the mutY and mutT mutants was comparable to that of the wild type. Because 7,8-dihydro-8-oxoguanine (8-oxoG) and formamido pyrimidine (Fapy) lesions can be removed from DNA by MutM protein, these lesions are thought to induce illegitimate recombination. Analysis of recombination junctions showed that the recombination at Hotspot I accounts for 22 or 4% of total λbio transducing phages in the wild type or in the mutM mutant, respectively. The preferential increase of recombination at nonhotspot sites with hydrogen peroxide in the mutM mutant was discussed on the basis of a new model, in which 8-oxoG and/or Fapy residues may introduce double-strand breaks into DNA.


2015 ◽  
Vol 197 (23) ◽  
pp. 3626-3628 ◽  
Author(s):  
Larry Reitzer

In this issue of theJournal of Bacteriology, Chonoles Imlay et al. (K. R. Chonoles Imlay, S. Korshunov, and J. A. Imlay, J Bacteriol 197:3629–3644, 2015,http://dx.doi.org/10.1128/JB.00277-15) show that oxidative stress kills sulfur-restrictedEscherichia coligrown with sublethal H2O2when challenged with cystine. Killing requires rapid and seemingly unregulated cystine transport and equally rapid cystine reduction to cysteine. Cysteine export completes an energy-depleting futile cycle. Each reaction of the cycle could be beneficial. Together, a cystine-mediated vulnerability emerges during the transition from a sulfur-restricted to a sulfur-replete environment, perhaps because of complexities of sulfur metabolism.


2007 ◽  
Vol 189 (11) ◽  
pp. 4243-4256 ◽  
Author(s):  
Karl M. Thompson ◽  
Virgil A. Rhodius ◽  
Susan Gottesman

ABSTRACT RybB is a small, Hfq-binding noncoding RNA originally identified in a screen of conserved intergenic regions in Escherichia coli. Fusions of the rybB promoter to lacZ were used to screen plasmid genomic libraries and genomic transposon mutants for regulators of rybB expression. A number of plasmids, including some carrying rybB, negatively regulated the fusion. An insertion in the rep helicase and one upstream of dnaK decreased expression of the fusion. Multicopy suppressors of these insertions led to identification of two plasmids that stimulated the fusion. One contained the gene for the response regulator OmpR; the second contained mipA, encoding a murein hydrolase. The involvement of MipA and OmpR in cell surface synthesis suggested that the rybB promoter might be dependent on σE. The sequence upstream of the +1 of rybB contains a consensus σE promoter. The activity of rybB-lacZ was increased in cells lacking the RseA anti-sigma factor and when σE was overproduced from a heterologous promoter. The activity of rybB-lacZ and the detection of RybB were totally abolished in an rpoE-null strain. In vitro, σE efficiently transcribes from this promoter. Both a rybB mutation and an hfq mutation significantly increased expression of both rybB-lacZ and rpoE-lacZ fusions, consistent with negative regulation of the σE response by RybB and other small RNAs. Based on the plasmid screens, NsrR, a repressor sensitive to nitric oxide, was also found to negatively regulate σE-dependent promoters in an RseA-independent fashion.


1999 ◽  
Vol 32 (1) ◽  
pp. 219-221 ◽  
Author(s):  
Abigail M. McGuire ◽  
Peter De Wulf ◽  
George M. Church ◽  
E. C. C. Lin

2003 ◽  
Vol 2 (5) ◽  
pp. 1018-1024 ◽  
Author(s):  
Neeraj Chauhan ◽  
Diane Inglis ◽  
Elvira Roman ◽  
Jesus Pla ◽  
Dongmei Li ◽  
...  

ABSTRACT Ssk1p of Candida albicans is a putative response regulator protein of the Hog1 two-component signal transduction system. In Saccharomyces cerevisiae, the phosphorylation state of Ssk1p determines whether genes that promote the adaptation of cells to osmotic stress are activated. We have previously shown that C. albicans SSK1 does not complement the ssk1 mutant of S. cerevisiae and that the ssk1 mutant of C. albicans is not sensitive to sorbitol. In this study, we show that the C. albicans ssk1 mutant is sensitive to several oxidants, including hydrogen peroxide, t-butyl hydroperoxide, menadione, and potassium superoxide when each is incorporated in yeast extract-peptone-dextrose (YPD) agar medium. We used DNA microarrays to identify genes whose regulation is affected by the ssk1 mutation. RNA from mutant cells (strain CSSK21) grown in YPD medium for 3 h at 30°C was reverse transcribed and then compared with similarly prepared RNA from wild-type cells (CAF2). We observed seven genes from mutant cells that were consistently up regulated (three-fold or greater compared to CAF2). In S. cerevisiae, three (AHP1, HSP12, and PYC2) of the seven genes that were up regulated provide cells with an adaptation function in response to oxidative stress; another gene (GPH1) is regulated under stress conditions by Hog1p. Three other genes that are up regulated encode a cell surface protein (FLO1), a mannosyl transferase (MNN4-4), and a putative two-component histidine kinase (CHK1) that regulates cell wall biosynthesis in C. albicans. Of the down-regulated genes, ALS1 is a known cell adhesin in C. albicans. Verification of the microarray data was obtained by reverse transcription-PCR for HSP12, AHP1, CHK1, PYC2, GPH1, ALS1, MNN4-4, and FLO1. To further determine the function of Ssk1p in the Hog1p signal transduction pathway in C. albicans, we used Western blot analysis to measure phosphorylation of Hog1p in the ssk1 mutant of C. albicans when grown under either osmotic or oxidative stress. We observed that Hog1p was phosphorylated in the ssk1 mutant of C. albicans when grown in a hyperosmotic medium but was not phosphorylated in the ssk1 mutant when the latter was grown in the presence of hydrogen peroxide. These data indicate that C. albicans utilizes the Ssk1p response regulator protein to adapt cells to oxidative stress, while its role in the adaptation to osmotic stress is less certain. Further, SSK1 appears to have a regulatory function in some aspects of cell wall biosynthesis. Thus, the functions of C. albicans SSK1 differ from those of S. cerevisiae SSK1.


Sign in / Sign up

Export Citation Format

Share Document