Further Development of the SCS Stretch-Forming Technology with Assistance of Forming Simulation

2010 ◽  
Vol 3 (S1) ◽  
pp. 155-158 ◽  
Author(s):  
Apostolos Papaioanu ◽  
M. Liewald
2014 ◽  
Vol 556-562 ◽  
pp. 460-463 ◽  
Author(s):  
Xue Chen ◽  
Ming Zhe Li ◽  
Wen Hua Liu ◽  
Zhi Qiang Hou

To solve the problem of low material utilization in traditional stretch forming process, a flexible stretch forming method was proposed, which can be realized by interaction of the multi-point stretch forming die with discrete-gripper stretch forming machine. The principle and characteristics of sheet metal flexible stretch forming technology was introduced, structural composition and working principle of the multi-point stretch forming die and discrete-gripper stretch forming machine were expounded, and the technology experiments was carried out with a self-designed flexible stretch forming technology equipment for sheet metal. The experimental results indicate that structure of multi-point stretch forming die and discrete-gripper stretch forming machine are reasonable, and flexible stretch forming technology can be realized by above-mentioned die and machine, stretch forming parts has a good quality and its shape error can satisfy requirements of production.


2014 ◽  
Vol 611-612 ◽  
pp. 149-161 ◽  
Author(s):  
Antonello Astarita ◽  
Luca Giorleo ◽  
Fabio Scherillo ◽  
Antonino Squillace ◽  
Elisabetta Ceretti ◽  
...  

Titanium alloys, due to their high mechanical properties coupled with light weight and high corrosion resistance, are finding a widespread use in the aeronautic industry. The use of titanium in replacing the conventional alloys, such as aluminum alloys and steel, is reduced by both the high cost of the raw material (it costs anywhere from 3 to 10 times as much as steel or aluminium) and the machining costs (at least 10 times that to machine aluminium). For such a reason new technologies have been studied and developed. In particular many researchers are searching for technologies, such as the precision hot forming, that allows to obtain components with a low buy to fly ratio. Many of the airframe component structures are designed to fit against the inside radius of the fuselage curvature. By combining traditional stretch forming technology with hot titanium forming techniques, the HSF guarantees a saving in material and machining time, which are two serious cost issues for todays aircraft manufacturers. In addition, the process allows for consistent quality in a productively efficient manner, assuring the sustainable attainment of delivery and build schedules. In order to develop and improve the HSF process a modeling of the process itself was executed in order to study the stresses and strains undergone by the material among the deformation. The FEM model was validated through the residual stresses, and in particular the residual stresses provided by the model were compared with the ones experimentally measured using the hole drilling technique. Good agreement, in terms of stress range, was recorded both for the maximum and the minimum stress.


2015 ◽  
Vol 794 ◽  
pp. 105-111 ◽  
Author(s):  
Matthias Schneider ◽  
Mathias Liewald

Short cycle stretch forming (SCS) is an innovative stretch forming technology, developed by the Institute for Metal Forming Technology (IFU) at the University of Stuttgart. The SCS technology combines plane pre-stretching and deep drawing operations within the same stroke of the press ram. The sheet metal thickness is reduced, and the denting resistance as well as the yield stress are increased due to hardening effects.In this study, the SCS technology is applied to rotational-symmetric bodies. A process simulation of an SCS cupping process was carried out for producing tinplate cans. Based on these results, a tool was produced. First results showed that the metal thickness of cups for two-piece drawn and ironed (D&I) steel can bottoms can be reduced. With this technological goal, it is possible to save the material cost in series production.This paper analyses how batch fluctuations affect the thinning of cup bottoms in SCS cupping. Therefore, preliminary experiments have been conducted, using their results to improve the previously used FE process model. With the aid of this model, an FEA-based parametric study on the variation of material properties is conducted. To examine batch fluctuations, tensile tests have been taken into account, and initial material parameters for simulation, such as friction coefficient, initial blank thickness, Lankford parameter and hardening behaviour, have been varied.The results of this paper show that SCS cupping offers a promising potential for material savings and demonstrate the main effects of batch fluctuations.


Author(s):  
Frank Schieck ◽  
Welf-Guntram Drossel ◽  
Hans Bräunlich ◽  
Sören Scheffler ◽  
Norbert Pierschel

Lightweight design in passenger cars is gaining more and more importance. Independent from conventionally or electrically drive train concepts, weight reduction is one of the most rated defining variables for fuel or energy consumption, thus affecting the range of the vehicle. Overall, the potential for using steel in lightweight bodywork construction has attained a high level of development with the result that the potential for further optimisation is increasingly diminishing. As a consequence, alternative lightweight construction materials are set to become more important in the future. Compared to the beneficial application potential regarding bending and distortion of steel- and Aluminium compared to Magnesium blanks, this material becomes more and more interesting for automobile applications. Beside challenges like corrosion and recycling, mainly an appropriate forming technology lies in the focus of investigations. Due to the insufficient forming conditions of Magnesium at room temperature the focus of investigation was related to the characterisation of material properties depending on temperature, the thermo-mechanical forming simulation for process and tool design and the practical realisation of complex, car-related part geometries as well as requirements for forming tools and additional devices. In the following article we will present the results of studies into the forming of magnesium sheets (AZ31) including tailored blanks, achieved within a growth cell (TeMaK and TeMaK+).


2013 ◽  
Vol 554-557 ◽  
pp. 647-656 ◽  
Author(s):  
Antonello Astarita ◽  
Enrico Armentani ◽  
Elisabetta Ceretti ◽  
Luca Giorleo ◽  
Pasquale Mastrilli ◽  
...  

The development of Hot Stretch Forming (HSF) by the Cyril Bath Company was in response to airframe designers needing to use Titanium airframe components in new commercial aircraft. Many of the airframe component structures are designed to fit against the inside radius of the fuselage curvature. By combining traditional stretch forming technology with hot titanium forming techniques, the HSF guarantees a saving in material and machining time, which are two serious cost issues for today’s aircraft manufacturers. In addition, the process allows for consistent quality in a productively efficient manner, assuring the sustainable attainment of delivery and build schedules. The HSF is an innovative process on the cutting edge of the technologies, so focused research is needed in order to better understand this technology and develop new applications for this process. in this paper the HSF process is investigated: the machine and the different steps that characterized the process were described and the results of a preliminary experimental campaign was discussed focusing the attention on the metallurgical aspect. Moreover a modeling of the process was executed in order to study the stresses and strains undergone by the material among the deformation.


2014 ◽  
Vol 941-944 ◽  
pp. 1850-1853 ◽  
Author(s):  
Kun Li Mao

End plate of some large container is of non-conventional type and rather large size, which is difficult to be formed. To choose fit technology parameters and mould structure, stress is analyzed and bending of shallow stretch forming rule is obeyed. Technology of large container end plate stretch forming in 500 tons oil hydraulic press is researched and one mould manufacturing method is given fit for shallow stretch forming. In this technology, to form convex bottom and improve strength, material-pressure plate is not adopted. To reduce wrinkle and stretch force, 30 degree cone of cavity die is selected. To reduce bending deformation and destabilization, round radius of male punch is 8 millimeters.


2013 ◽  
Vol 395-396 ◽  
pp. 941-944
Author(s):  
Qi Gang Han ◽  
Qiang Zhang ◽  
Ming Zhe Li ◽  
Shi Zhong Su ◽  
Wen Ke Yang ◽  
...  

To remove the disadvantage of conventional stretch forming machine (CSFM), a flexible stretch forming machine (FSFM) has been developed by authors recently. Based on finite element simulation and experiments, the advantages of FSFM have been detailed discussed. Our results indicated that the discrete multi-gripping jaws can swing and rotate in any direction automatically, which can solve the wasteful production of CSFM by increase the rate of materials utilization and close-fitting dies. Furthermore, the value of springback and thickness gradient in the parts formed by discrete multi-gripping jaws is smaller compare with that of integrally gripping jaws, which can help to achieve a high quality of stretch forming parts. A series of double-curved sheet panels have been formed by FSFM easily and used in the cabinet covers of high-speed train and the Dongdaemun Design Park building successfully. This work has a strong value in enhance the way to flexible and reproducible stretch forming technology.


Sign in / Sign up

Export Citation Format

Share Document