Optimum design of composite pressure vessel structure based on 3-dimensional failure criteria

2019 ◽  
Vol 13 (6) ◽  
pp. 957-965
Author(s):  
Young H. Park ◽  
James Sakai
Author(s):  
J. Sakai ◽  
Y. H. Park

Abstract Anisotropic composite cylinders and pressure vessels have been widely employed in automotive, aerospace, chemical and other engineering areas due to high strength/stiffness-to-weight ratio, exceptional corrosion resistance, and superb thermal performance. Pipes, fuel tanks, chemical containers, rocket motor cases and aircraft and ship elements are a few examples of structural application of fiber reinforced composites (FRCs) for pressure vessels/pipes. Since the performance of composite materials replies on the tensile and compressive strengths of the fiber directions, the optimum design of composite laminates with varying fiber orientations is desired to minimize the damage of the structure. In this study, a complete mathematical 3D elasticity solution was developed, which can accurately compute stresses of a thick multilayered anisotropic fiber reinforced pressure vessel under force and pressure loadings. A rotational variable is introduced in the formalism to treat torsional loading in addition to force and pressure loadings. Then, the three-dimensional Tsai-Wu criterion is used based on the analytical solution to predict the failure. Finally, a global optimization algorithm is used to find the optimum fiber orientation and their best combination through the thickness direction.


2016 ◽  
Vol 51 (14) ◽  
pp. 1961-1969 ◽  
Author(s):  
Ji Zhou ◽  
Jianqiao Chen ◽  
Yaochen Zheng ◽  
Zhu Wang ◽  
Qunli An

Filament-wound composite pressure vessels, owing to the advantages of their high specific strength, specific modulus and fatigue resistance, as well as excellent design performance, have been widely used in energy engineering, chemical industry and other fields. A filament-wound composite pressure vessel generally consists of two parts, a cylindrical drum part and the dome parts. In the cylindrical drum part, the filament winding angle and the winding layer thickness can be easily determined due to the regular shape. In the dome parts, however, both the winding angle and the thickness vary along the meridian line. Performance of the dome parts, which strongly depends on the effect of end-opening and the winding mode, dominates the performance of a pressure vessel. In this paper, optimum design of the dome parts is studied by considering both geodesic winding and non-geodesic winding patterns. A hyperelliptic function is adopted as the basis function for describing the meridian of the dome shape. The dome contour is optimized by taking the shape factor (S.F.) as the objective and parameters in the basis function as the design variables. A specific composite pressure vessel is taken as the numerical analysis example with varying dome shape which is to be optimized. The optimum design solution is obtained through the particle swarm optimization algorithm. It shows that an optimized dome with non-geodesic winding has better S.F. as compared with geodesic winding. Influences of the slippage coefficient and the polar opening on the S.F. are also discussed.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Isaiah Ramos ◽  
Young Ho Park ◽  
Jordan Ulibarri-Sanchez

In this paper, we developed an exact analytical 3D elasticity solution to investigate mechanical behavior of a thick multilayered anisotropic fiber-reinforced pressure vessel subjected to multiple mechanical loadings. This closed-form solution was implemented in a computer program, and analytical results were compared to finite element analysis (FEA) calculations. In order to predict through-thickness stresses accurately, three-dimensional finite element meshes were used in the FEA since shell meshes can only be used to predict in-plane strength. Three-dimensional FEA results are in excellent agreement with the analytical results. Finally, using the proposed analytical approach, we evaluated structural damage and failure conditions of the composite pressure vessel using the Tsai–Wu failure criteria and predicted a maximum burst pressure.


2014 ◽  
Vol 22 (3) ◽  
pp. 323-328
Author(s):  
Weicheng Jiao ◽  
Yue Niu ◽  
Lifeng Hao ◽  
Fan Yang ◽  
Wenbo Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document