On the selection of an empirical material constitutive model for the finite element modeling of Ti6Al4V orthogonal cutting, including the segmented chip formation

Author(s):  
F. Ducobu ◽  
P.-J. Arrazola ◽  
E. Rivière-Lorphèvre ◽  
E. Filippi
2012 ◽  
Vol 505 ◽  
pp. 31-36 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
Bashir Mohamed ◽  
A.A. Oshkour

Titanium alloys are desirable materials for aerospace industry because of their excellent combination of high specific strength, lightweight, fracture resistant characteristics, and general corrosion resistance. Therefore, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. The chips are generally classified into four groups: continuous chips, chips with built-up-edges (BUE), discontinuous chips and serrated chips. . The chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The mechanics of segmented chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V are studied in detail with the aid of high-speed imaging of the chip formation zone. The finite element model of chip formation of Ti–6Al–4V is suggested as a discontinuous type chip at lower cutting speeds developing into a continuous, but segmented, chip at higher cutting speeds. The prediction by using finite-element modeling method and simulation process in machining while create chips formation can contribute in reducing the cost of manufacturing in terms of prolongs the cutting tool life and machining time saving.


2006 ◽  
Vol 306-308 ◽  
pp. 1271-1276 ◽  
Author(s):  
H.R. Fang ◽  
T. Tang ◽  
X.M. Zhang ◽  
Zhuo Zhuang ◽  
Wei Yang ◽  
...  

The hyperelastic constitutive model of cardiac muscle is developed based on the animal surgical operation and mechanical experiments from the heart of the dogs, and the relaxation phenomena is also studied based on the Hill three elements model which is viscoelastic. Some numerical simulations are presented by finite element for the cardiac pacing/defibrillation lead interaction with muscles of the heart.


2003 ◽  
Vol 125 (3) ◽  
pp. 324-332 ◽  
Author(s):  
Y. Ohbuchi ◽  
T. Obikawa

A thermo-elastic-plastic finite element modeling of orthogonal cutting with a large negative rake angle has been developed to understand the mechanism and thermal aspects of grinding. A stagnant chip material ahead of the tool tip, which is always observed with large negative rake angles, is assumed to act like a stable built-up edge. Serrated chips, one of typical shapes of chips observed in single grain grinding experiment, form when analyzing the machining of 0.93%C carbon steel SK-5 with a rake angle of minus forty five or minus sixty degrees. There appear high and low temperature zones alternately according to severe and mild shear in the primary shear zone respectively. The shapes of chips depend strongly on the cutting speed and undeformed chip thickness; as the cutting speed or the undeformed chip thickness decreases, chip shape changes from a serrated type to a bulging one to a wavy or flow type. Therefore, there exists the critical cutting speed over which a chip can form and flow along a rake face for a given large negative rake angle and undeformed chip thickness.


Author(s):  
Raviraj Shetty ◽  
Sanjeev Kumar ◽  
Ravindra Mallagi ◽  
Laxmikanth Keni

The outstanding characteristics of titanium alloy (Ti–6Al–4V) have made this material applicable in aerospace and medical components. However, due to its poor machinability characteristics, researchers are forced to understand the machinability behavior of Ti–6Al–4V. In this paper, [Formula: see text] orthogonal array-based three-dimensional finite element modeling for the cutting force and chip formation analysis during the machining of Ti–6Al–4V using cubic boron nitride tool in dry turning environment has been investigated. The finite element simulation was performed using ANSYS Workbench, version 19.0. Cutting force and chip formation were investigated using the results obtained from [Formula: see text] orthogonal array-based three-dimensional finite element modeling. This research would help to identify the optimum cutting conditions and minimize the cutting force followed by analyzing the types of chips formed during machining under the selected set of cutting conditions.


Author(s):  
Yao Xi ◽  
Michael Bermingham ◽  
Gui Wang ◽  
Matthew Dargusch

The improvement in machinability during thermally assisted turning of the Ti-6Al-4V alloy has been investigated using finite element modeling. A 2D thermally assisted turning model was developed and validated by comparing the simulation results with experimental results. The effect of workpiece temperature on the cutting force and chip formation process was examined. The predicted cutting forces and chip morphologies from the simulation strongly correlated with the experimental results. It was observed from the simulation that the chip forms after the coalescence of two deformed regions in the shear band and that the cyclic cutting forces are strongly related to this chip formation process.


Sign in / Sign up

Export Citation Format

Share Document