scholarly journals Therapeutic Use of Cerebellar Intermittent Theta Burst Stimulation (iTBS) in a Sardinian Family Affected by Spinocerebellar Ataxia 38 (SCA 38)

2021 ◽  
Author(s):  
Angela Sanna ◽  
Paolo Follesa ◽  
Paolo Tacconi ◽  
Mariangela Serra ◽  
Maria Giuseppina Pisu ◽  
...  

AbstractSpinocerebellar ataxia 38 (SCA 38) is an autosomal dominant disorder caused by conventional mutations in the ELOVL5 gene which encodes an enzyme involved in the synthesis of very long fatty acids, with a specific expression in cerebellar Purkinje cells. Three Italian families carrying the mutation, one of which is of Sardinian descent, have been identified and characterized. One session of cerebellar intermittent theta burst stimulation (iTBS) was applied to 6 affected members of the Sardinian family to probe motor cortex excitability measured by motor-evoked potentials (MEPs). Afterwards, patients were exposed to ten sessions of cerebellar real and sham iTBS in a cross-over study and clinical symptoms were evaluated before and after treatment by Modified International Cooperative Ataxia Rating Scale (MICARS). Moreover, serum BDNF levels were evaluated before and after real and sham cerebellar iTBS and the role of BDNF Val66Met polymorphism in influencing iTBS effect was explored. Present data show that one session of cerebellar iTBS was able to increase MEPs in all tested patients, suggesting an enhancement of the cerebello-thalamo-cortical pathway in SCA 38. MICARS scores were reduced after ten sessions of real cerebellar iTBS showing an improvement in clinical symptoms. Finally, although serum BDNF levels were not affected by cerebellar iTBS when considering all samples, segregating for genotype a difference was found between Val66Val and Val66Met carriers. These preliminary data suggest a potential therapeutic use of cerebellar iTBS in improving motor symptoms of SCA38.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeffrey D. Voigt ◽  
Andrew F. Leuchter ◽  
Linda L. Carpenter

AbstractPatients with major depressive disorder (MDD) may be refractory to or have contraindications that preclude treatment with antidepressant pharmacotherapies. Alternative therapies such as repetitive transcranial magnetic stimulation (rTMS) continue to evolve, and include theta burst stimulation (TBS), which has advantages over conventional rTMS. The aim of this study was to identify and meta-analyze efficacy data from all randomized controlled trials (RCTs) investigating TBS as a treatment for MDD. Published reports of RCTs (January 1, 2010 to October 23, 2020) were identified via systematic searches in computerized databases, followed by review of individual reports for inclusion. Inclusion criteria included primary diagnosis of MDD ≥ 1 week duration of therapy with ≥10 sessions, and treatment with any form of TBS. The Cochrane GRADE methodology and PRISMA criteria were used for evaluation of individual trials. Data from ten RCTs were included, representing 667 patients. Of these, 8 RCTs compared TBS to sham treatment and one compared TBS to standard rTMS (i.e., high frequency stimulation over left dorsolateral prefrontal cortex [HFL]). Quality of evidence assessment yielded high confidence in the finding of TBS being superior to sham on response measured by the Hamilton Depression Rating Scale (HRSD) (RR = 2.4; 95% CI: 1.27 to 4.55; P = 0.007; I2 = 40%). Comparison of HRSD response rates for TBS versus rTMS produced no statistically significant difference (RR = 1.02; 95% CI: 0.85 to 1.23; P = 0.80; I2 = 0%). The incidence of adverse events between TBS and rTMS was not statistically different. The findings of a positive effect of TBS vs. sham, and noninferiority of TBS vs. standard HFL rTMS support the continued development of TBS to treat depression.


Author(s):  
Christian Plewnia ◽  
Bettina Brendel ◽  
Tobias Schwippel ◽  
Vanessa Nieratschker ◽  
Thomas Ethofer ◽  
...  

AbstractRepetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (dlPFC) is currently evolving as an effective and safe therapeutic tool in the treatment of major depressive disorder (MDD). However, already established rTMS treatment paradigms are rather time-consuming. With theta burst stimulation (TBS), a patterned form of rTMS, treatment time can be substantially reduced. Pilot studies and a randomized controlled trial (RCT) demonstrate non-inferiority of TBS to 10 Hz rTMS and support a wider use in MDD. Still, data from placebo-controlled multicenter RCTs are lacking. In this placebo-controlled multicenter study, 236 patients with MDD will be randomized to either intermittent TBS (iTBS) to the left and continuous TBS (cTBS) to the right dlPFC or bilateral sham stimulation (1:1 ratio). The treatment will be performed with 80% resting motor threshold intensity over six consecutive weeks (30 sessions). The primary outcome is the treatment response rate (Montgomery-Asberg Depression Rating Scale reduction ≥ 50%). The aim of the study is to confirm the superiority of active bilateral TBS compared to placebo treatment. In two satellite studies, we intend to identify possible MRI-based and (epi-)genetic predictors of responsiveness to TBS therapy. Positive results will support the clinical use of bilateral TBS as an advantageous, efficient, and well-tolerated treatment and pave the way for further individualization of MDD therapy.Trial registration: ClinicalTrials.gov (NCT04392947).


2021 ◽  
Vol 65 ◽  
pp. 162-166
Author(s):  
B. N. Keerthy ◽  
Sai Sreevalli Sarma Sreepada ◽  
Shalini S. Naik ◽  
Anushree Bose ◽  
Raju Hanumegowda ◽  
...  

Objectives: Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have been used as neuromodulators in neuropsychiatric conditions. This study is aimed to find the effects of a single session of priming cathodal tDCS with intermittent theta-burst stimulation (iTBS) over left dorsolateral prefrontal cortex on heart rate variability (HRV) and cortical excitability parameters before and after perturbation. Materials and Methods: The neuromodulatory techniques used in the study were Cathodal tDCS for 20 min followed by iTBS for 3 min on the left dorsolateral prefrontal cortex (DLPFC). HRV variables and TMS parameters were recorded before and after this intervention of combined neuromodulation in 31 healthy volunteers (20 males and 11 females; age range of 19–35 years with Mean ± SD = 24.2 ± 4.7 years). Results: The results showed an overall increase in cortical excitability and parasympathetic dominance in healthy volunteers. Other measures of cortical excitability and HRV did not change significantly following single session of combined neuromodulation. Conclusion: This study showed that there is an overall increase in cortical excitability and parasympathetic dominance in the cohort of healthy volunteers following a combination of neuromodulation involving cathodal tDCS followed by iTBS over left DLPFC. Future studies exploring the effects of other possible combinations with sham stimulation could be carried out to explore the utility of dual stimulation as add-on therapy in disorders.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Daina S. E. Dickins ◽  
Martin V. Sale ◽  
Marc R. Kamke

Numerous studies have reported that plasticity induced in the motor cortex by transcranial magnetic stimulation (TMS) is attenuated in older adults. Those investigations, however, have focused solely on the stimulated hemisphere. Compared to young adults, older adults exhibit more widespread activity across bilateral motor cortices during the performance of unilateral motor tasks, suggesting that the manifestation of plasticity might also be altered. To address this question, twenty young (<35 years old) and older adults (>65 years) underwent intermittent theta burst stimulation (iTBS) whilst attending to the hand targeted by the plasticity-inducing procedure. The amplitude of motor evoked potentials (MEPs) elicited by single pulse TMS was used to quantify cortical excitability before and after iTBS. Individual responses to iTBS were highly variable, with half the participants showing an unexpected decrease in cortical excitability. Contrary to predictions, however, there were no age-related differences in the magnitude or manifestation of plasticity across bilateral motor cortices. The findings suggest that advancing age does not influence the capacity for, or manifestation of, plasticity induced by iTBS.


2017 ◽  
Vol 10 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Tuo Lin ◽  
Lisheng Jiang ◽  
Zulin Dou ◽  
Cheng Wu ◽  
Feng Liu ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Tino Stöckel ◽  
Jeffery J. Summers ◽  
Mark R. Hinder

Intermittent theta burst stimulation (iTBS) has the potential to enhance corticospinal excitability (CSE) and subsequent motor learning. However, the effects of iTBS following motor learning are unknown. The purpose of the present study was to explore the effect of iTBS on CSE and performance following motor learning. Therefore twenty-four healthy participants practiced a ballistic motor task for a total of 150 movements. iTBS was subsequently applied to the trained motor cortex (STIM group) or the vertex (SHAM group). Performance and CSE were assessed before motor learning and before and after iTBS. Training significantly increased performance and CSE in both groups. In STIM group participants, subsequent iTBS significantly reduced motor performance with smaller reductions in CSE. CSE changes as a result of motor learning were negatively correlated with both the CSE changes and performance changes as a result of iTBS. No significant effects of iTBS were found for SHAM group participants. We conclude that iTBS has the potential to degrade prior motor learning as a function of training-induced CSE changes. That means the expected LTP-like effects of iTBS are reversed following motor learning.


Sign in / Sign up

Export Citation Format

Share Document