Upper limit of maturity for hydrocarbon generation in carbonate source rocks in the Tarim Basin Platform, China

2014 ◽  
Vol 8 (5) ◽  
pp. 2497-2514 ◽  
Author(s):  
Zhipeng Huo ◽  
Xiongqi Pang ◽  
Xuecheng Ouyang ◽  
Baoshou Zhang ◽  
Weibing Shen ◽  
...  
2020 ◽  
Vol 17 (6) ◽  
pp. 1491-1511
Author(s):  
Jun-Qing Chen ◽  
Xiong-Qi Pang ◽  
Song Wu ◽  
Zhuo-Heng Chen ◽  
Mei-Ling Hu ◽  
...  

AbstractHydrocarbon expulsion occurs only when pore fluid pressure due to hydrocarbon generation in source rock exceeds the force against migration in the adjacent carrier beds. Taking the Middle–Upper Ordovician carbonate source rock of Tarim Basin in China as an example, this paper proposes a method that identifies effective carbonate source rock based on the principles of mass balance. Data from the Well YW2 indicate that the Middle Ordovician Yijianfang Formation contains effective carbonate source rocks with low present-day TOC. Geological and geochemical analysis suggests that the hydrocarbons in the carbonate interval are likely self-generated and retained. Regular steranes from GC–MS analysis of oil extracts in this interval display similar features to those of the crude oil samples in Tabei area, indicating that the crude oil probably was migrated from the effective source rocks. By applying to other wells in the basin, the identified effective carbonate source rocks and non-source rock carbonates can be effectively identified and consistent with the actual exploration results, validating the method. Considering the contribution from the identified effective source rocks with low present-day TOC (TOCpd) is considered, the long-standing puzzle between the proved 3P oil reserves and estimated resources in the basin can be reasonably explained.


2006 ◽  
Vol 51 (23) ◽  
pp. 2885-2891 ◽  
Author(s):  
Xinhua Geng ◽  
Ansong Geng ◽  
Yongqiang Xiong ◽  
Jinzhong Liu ◽  
Haizu Zhang ◽  
...  

2018 ◽  
Vol 36 (4) ◽  
pp. 801-819 ◽  
Author(s):  
Shuangfeng Zhao ◽  
Wen Chen ◽  
Zhenhong Wang ◽  
Ting Li ◽  
Hongxing Wei ◽  
...  

The condensate gas reservoirs of the Jurassic Ahe Formation in the Dibei area of the Tarim Basin, northwest China are typical tight sandstone gas reservoirs and contain abundant resources. However, the hydrocarbon sources and reservoir accumulation mechanism remain debated. Here the distribution and geochemistry of fluids in the Ahe gas reservoirs are used to investigate the formation of the hydrocarbon reservoirs, including the history of hydrocarbon generation, trap development, and reservoir evolution. Carbon isotopic analyses show that the oil and natural gas of the Ahe Formation originated from different sources. The natural gas was derived from Jurassic coal measure source rocks, whereas the oil has mixed sources of Lower Triassic lacustrine source rocks and minor amounts of coal-derived oil from Jurassic coal measure source rocks. The geochemistry of light hydrocarbon components and n-alkanes shows that the early accumulated oil was later altered by infilling gas due to gas washing. Consequently, n-alkanes in the oil are scarce, whereas naphthenic and aromatic hydrocarbons with the same carbon numbers are relatively abundant. The fluids in the Ahe Formation gas reservoirs have an unusual distribution, where oil is distributed above gas and water is locally produced from the middle of some gas reservoirs. The geochemical characteristics of the fluids show that this anomalous distribution was closely related to the dynamic accumulation of oil and gas. The period of reservoir densification occurred between the two stages of oil and gas accumulation, which led to the early accumulated oil and part of the residual formation water being trapped in the tight reservoir. After later gas filling into the reservoir, the fluids could not undergo gravity differentiation, which accounts for the anomalous distribution of fluids in the Ahe Formation.


2005 ◽  
Vol 28 (1) ◽  
pp. 67-82 ◽  
Author(s):  
C. Soylu ◽  
M. N. Yalcin ◽  
B. Horsfield ◽  
H. J. Schenk ◽  
U. Mann

2012 ◽  
Vol 622-623 ◽  
pp. 1642-1645
Author(s):  
Zong Lin Xiao ◽  
Qing Qing Hao ◽  
Zhong Min Shen

The Tarim basin is an important petroleum basin in China, and the Cambrian strata are the major source rock successions in the basin. Integrated the source rock depositional and structural history with its geochemical and thermal parameters, this paper simulates the evolution of the Cambrian source rocks with the software Basinview. The simulation result shows that the main hydrocarbon-generation centers of the Manjiaer sag in the Tabei depression and the Tangguzibasi sag in the Southwest depression are characterized by their early hydrocarbon generation, and in the late Ordovician depositional age, they reached dry gas stage. The Kuqa and Southwest depressions developed in the Cenozoic foreland basins made the Cambrian source rocks mature rapidly in the Cenozoic period. The source rock maturity in the Tarim basin now is characterized by high in the east and west and low in the middle, and most of the area is in the over-mature stage in the present. This study can provide available maturity data for the next petroleum exploration work.


2018 ◽  
Vol 36 (5) ◽  
pp. 1335-1355 ◽  
Author(s):  
Junqing Chen ◽  
Xiongqi Pang ◽  
Hong Pang

Plenty of marine crude oil generated by the Middle–Upper Ordovician source rocks has been discovered in the Tabei Uplift, Tarim Basin. Previous studies on the extensively distributed low organic matter source rock total organic carbon ≤ 0.5%) imply that this contributes to oil accumulation. Thus, the identification of present-day low-total organic carbon source rocks that experience hydrocarbon expulsion and evaluation of their contribution is of considerable significance to analyze marine oil accumulation and to assess the resources in the Tarim Basin. Using the mass balance approach, we identify and verify present-day low-total organic carbon carbonate source rocks and present a quantitative model using well-logging data to predict the present-day low-total organic carbon carbonate source rocks in order to evaluate their contribution in the Tarim Basin. Hydrocarbon expulsion has occurred in the Yijianfang formation, which has present-day low-total organic carbon, between 6452 and 6487 m in the Yangwu 2 well. In the horizons depicting carbonates with hydrocarbon expulsion, the porosity is relatively high and the daily oil production is 0.19 m3 according to the perforation tests. The extracts have similar biomarker signatures to that of the crude oils in the Tabei Uplift. In this study, a quick and cost-effective quantitative model is developed using double lateral resistivity and uranium/thorium well-logging data. By applying the prediction model, the contribution of present-day low-total organic carbon carbonate source rocks in the Middle–Upper Ordovician formation of the Tarim Basin is primarily evaluated to be 363.38 × 109 bbl oil equivalent.


Sign in / Sign up

Export Citation Format

Share Document