Evaluation of the GPS Precise Point Positioning technique during the 21 July 2017 Kos-Bodrum (East Aegean Sea) Mw 6.6 earthquake

2018 ◽  
Vol 11 (24) ◽  
Author(s):  
Ali Hasan Dogan ◽  
Nursu Tunalioglu ◽  
Bahattin Erdogan ◽  
Taylan Ocalan
2016 ◽  
Vol 7 (6) ◽  
pp. 1856-1873 ◽  
Author(s):  
Raquel M. Capilla ◽  
José Luis Berné ◽  
Angel Martín ◽  
Raul Rodrigo

2012 ◽  
Vol 23 (2) ◽  
pp. 209 ◽  
Author(s):  
Chung-Yen Kuo ◽  
Kuan-Wei Chiu ◽  
Kai-Wei Chiang ◽  
Kai-Chien Cheng ◽  
Li-Ching Lin ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
pp. 53-60 ◽  
Author(s):  
S. Nistor ◽  
A. S. Buda

Abstract Because of the dynamics of the GPS technique used in different domains like geodesy, near real-time GPS meteorology, geodynamics, the precise point positioning (PPP) becomes more than a powerful method for determining the position, or the delay caused by the atmosphere. The main idea of this method is that we need only one receiver – preferably that have dual frequencies pseudorange and carrier-phase capabilities – to obtain the position. Because we are using only one receiver the majority of the residuals that are eliminated in double differencing method, we have to estimate them in PPP. The development of the PPP method allows us, to use precise satellite clock estimates, and precise orbits, resulting in a much more efficient way to deal with the disadvantages of this technique, like slow convergence time, or ambiguity resolution. Because this two problem are correlated, to achieve fast convergence we need to resolve the problem of ambiguity resolution. But the accuracy of the PPP results are directly influenced by presence of the uncalibrated phase delays (UPD) originating in the receivers and satellites. In this article we present the GPS errors and biases, the zenith wet delay and the necessary time for obtaining the convergence. The necessary correction are downloaded by using the IGS service.


2020 ◽  
Vol 43 (1) ◽  
pp. 1-12
Author(s):  
Nguyen Ngoc Lau ◽  
Richard Coleman ◽  
Ha Minh Hoa

Determining the speed of tectonic plate displacement helps us to better understand tectonic activities of the area, and is a prerequisite to help forecast earthquakes. The determination of tectonic plate displacement by GNSS technology in Vietnam has been conducted since the 2000s, mainly using the relative positioning technique. The increasing accuracy of precise point positioning technique, and the number of CORS in Vietnam, will facilitate the accurate determination of tectonic velocities. Based on the GNSS data of some CORSs in Vietnam from 2016-2018, we have determined accurately their three-dimensional coordinates using a precise point positioning technique. After modeling periodic variations on the time series, we calculated the tectonic movement rate of 7 Vietnamese stations and 3 other stations in the region. Through analysis and comparison with other geology/plate motion models and GPS results, we conclude that this result is reliable. The velocity of tectonic motion in the North, East and Up components of Ha Noi, Da Nang and Ho Chi Minh City are respectively (-13.1, +32.8, -1.3), (-9.9, +31.0, +2.6) and (-10.3, +26.9, +2.7)  mm/year.


Sign in / Sign up

Export Citation Format

Share Document