Geotechnical settings of volcanic residual soils and derived engineering problems in El Hierro Island (Spain)

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fabiola Fernández-Baniela ◽  
Daniel Arias ◽  
Álvaro Rubio-Ordóñez
Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1468
Author(s):  
Fabiola Fernández-Baniela ◽  
Daniel Arias ◽  
Álvaro Rubio-Ordoñez

This article exposes one of the main engineering problems in the design and construction of the upper reservoir of El Hierro hydro-wind plant, relative to the high settlement of the bottom in the southeast area. The high settlements measured during the construction phase are consequence of the geological-geotechnical settings of the site, a natural depression of a volcanic crater occupied by highly deformable soils derived from the weathering of volcanic materials. Ground improvement was carried out by partial preloading (mobile dune), preceded by the execution of a trial embankment in the southeast area of the reservoir, where the greatest thickness of deformable soils was identified.


Author(s):  
Er. Hardik Dhull

The finite element method is a numerical method that is used to find solution of mathematical and engineering problems. It basically deals with partial differential equations. It is very complex for civil engineers to study various structures by using analytical method,so they prefer finite element methods over the analytical methods. As it is an approximate solution, therefore several limitationsare associated in the applicationsin civil engineering due to misinterpretationof analyst. Hence, the main aim of the paper is to study the finite element method in details along with the benefits and limitations of using this method in analysis of building components like beams, frames, trusses, slabs etc.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 920
Author(s):  
Chukwuma Ogbonnaya ◽  
Chamil Abeykoon ◽  
Adel Nasser ◽  
Ali Turan

A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code-based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to x1 = 1:5:100. The application of the proposed approach in modelling and simulation of photovoltaic and thermophotovoltaic systems were also highlighted. Overall, solutions to SoTEs present new opportunities for including more functions and variables in numerical models of systems, which will ultimately lead to a more robust representation of physical systems.


Geomorphology ◽  
2021 ◽  
Vol 381 ◽  
pp. 107661
Author(s):  
Mauro Rossi ◽  
Roberto Sarro ◽  
Paola Reichenbach ◽  
Rosa María Mateos

Sign in / Sign up

Export Citation Format

Share Document