Excavation and support method of tunnel with high ground stress and weak surrounding rock based on GIS

2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Zhichun Fang ◽  
Zhengguo Zhu ◽  
Pengfei Wu ◽  
Renyuan Wang ◽  
Chaoyi Ma ◽  
...  
2021 ◽  
Vol 14 (24) ◽  
Author(s):  
Zhichun Fang ◽  
Zhengguo Zhu ◽  
Pengfei Wu ◽  
Renyuan Wang ◽  
Chaoyi Ma ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3645
Author(s):  
Helin Fu ◽  
Pengtao An ◽  
Long Chen ◽  
Guowen Cheng ◽  
Jie Li ◽  
...  

Affected by the coupling of excavation disturbance and ground stress, the heterogeneity of surrounding rock is very common. Presently, treating the permeability coefficient as a fixed value will reduce the prediction accuracy of the water inflow and the external water pressure of the structure, leading to distortion of the prediction results. Aiming at this problem, this paper calculates and analyzes tunnel water inflow when considering the heterogeneity of permeability coefficient of surrounding rock using a theoretical analysis method, and compares with field data, and verifies the rationality of the formula. The research shows that, when the influence of excavation disturbance and ground stress on the permeability coefficient of surrounding rock is ignored, the calculated value of the external water force of the tunnel structure is too small, and the durability and stability of the tunnel are reduced, which is detrimental to the safety of the structure. Considering the heterogeneity of surrounding rock, the calculation error of water inflow can be reduced from 27.3% to 13.2%, which improves the accuracy of water inflow prediction to a certain extent.


2018 ◽  
Author(s):  
Fujin Hou ◽  
Shucai Li ◽  
Xinzhi Li ◽  
Wenjiang Li ◽  
Qing Jiang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Pengfei Jiao ◽  
Xiao Zhang ◽  
Xinzhi Li ◽  
Bohong Liu ◽  
Haojie Zhang

In the aspect of stability analysis of tunneling engineering, geomechanical model test is an important research method. A similar material is the prerequisite for the success of geomechanical model test. In the field of major engineering applications, a variety of similar materials are prepared for different geological conditions of surrounding rock and applied in some major engineering. With the use of standard sand, fine sand, and silt clay as materials, similar materials for weak surrounding rock were developed. Based on the orthogonal design method, through the direct shear test, the range analysis and variance analysis of various factors affecting the physical and mechanical parameters of weak surrounding rock are carried out. The results show similar material can meet the requirements in weak surrounding rock. Standard sand is the key factor that influences the internal friction angle of similar materials, and silt clay is the key factor affecting the cohesion of similar materials. Similar materials can meet the elastic modulus and severe requirements of the weak surrounding rock and can be used for the weak surrounding rock engineering. The new type of similar material configuration is widely used in shallow buried tunnel entrance section and urban shallow buried excavation engineering, in addition to tunnel engineering in loess stratum, and the problems of engineering design and construction are solved through geomechanical model test.


2013 ◽  
Vol 438-439 ◽  
pp. 1210-1216
Author(s):  
Xuan Rong Zheng

As lack of explicit analysis method on the sequence of many factors influencing the plastic zone extension of surrounding rock, the grey correlation analysis method is adopted to study the relationship between the plastic zone extension radius Rp and the six factors such as cohesive c, internal friction angle φ, deformation modulus E, unit weight γ, initial ground stress σ and the radius of chamber r. By dealing with dimensionless, the corresponding sequences composed with the sensitive factors as sub-sequence and the plastic zone extension radius as mother sequence are obtained. The gray correlation analysis model of sensitive factors which evaluates the results with grey correlation degree is built by the methods of dimensionless and extreme difference variation. Then, an engineering example is analyzed with grey correlation. Based on the analysis results, the sorting of sensitive factors is φ > σ > c > r > E > γ. It implies that the influences of internal friction angle φ and initial ground stress σ are the most prominent, and the sensitivities of deformation modulus E and unit weight γ are lowest. These are in good agreement with the analytical formula of classical theory, and can be used in guiding the further optimization and improvement of the analytical expression of the plastic zone extension radius Rp of surrounding rock.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Zhongyu Jiang ◽  
Guoqing Zhou

The stress analysis of the wellhole surrounding rock and the regular failure of the wellhole has always been a concern for the well builders. Firstly, the Hamilton canonical equations are obtained by using the Hamiltonian variational principle in the sector domain, and the zero eigensolution and nonzero eigensolutions of the homogeneous equation are solved. According to the Hamiltonian operator matrix with the orthogonal eigenfunction system, the special solution form of the nonhomogeneous boundary condition equation is obtained. Then, according to the principle of the same coefficient being equal, the relationship equation between the direction eigenvalue and the angle coefficient is obtained, from which the specific expression of the special solution of the equation can be determined. Furthermore, the analytical solution of the wellhole surrounding rock problem under nonuniform ground stress is obtained by using the linear elastic accumulative principle. Finally, a concrete example is given to compare the finite element method and the symplectic algorithm. The results are consistent, which ensures the accuracy and the reliability of the symplectic algorithm. The relationship between the circumferential stress distribution around the hole and the lateral pressure coefficient is further analyzed.


Sign in / Sign up

Export Citation Format

Share Document