scholarly journals Research on Influencing Factors of Reasonable Distance of Shallow Buried Close Tunnel in Weak Surrounding Rock

2021 ◽  
Vol 638 (1) ◽  
pp. 012059
Author(s):  
Yao Zaifeng ◽  
Guo Jiantao ◽  
Liu Yishuo ◽  
Gao Wenyuan
2018 ◽  
Author(s):  
Fujin Hou ◽  
Shucai Li ◽  
Xinzhi Li ◽  
Wenjiang Li ◽  
Qing Jiang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Pengfei Jiao ◽  
Xiao Zhang ◽  
Xinzhi Li ◽  
Bohong Liu ◽  
Haojie Zhang

In the aspect of stability analysis of tunneling engineering, geomechanical model test is an important research method. A similar material is the prerequisite for the success of geomechanical model test. In the field of major engineering applications, a variety of similar materials are prepared for different geological conditions of surrounding rock and applied in some major engineering. With the use of standard sand, fine sand, and silt clay as materials, similar materials for weak surrounding rock were developed. Based on the orthogonal design method, through the direct shear test, the range analysis and variance analysis of various factors affecting the physical and mechanical parameters of weak surrounding rock are carried out. The results show similar material can meet the requirements in weak surrounding rock. Standard sand is the key factor that influences the internal friction angle of similar materials, and silt clay is the key factor affecting the cohesion of similar materials. Similar materials can meet the elastic modulus and severe requirements of the weak surrounding rock and can be used for the weak surrounding rock engineering. The new type of similar material configuration is widely used in shallow buried tunnel entrance section and urban shallow buried excavation engineering, in addition to tunnel engineering in loess stratum, and the problems of engineering design and construction are solved through geomechanical model test.


2013 ◽  
Vol 690-693 ◽  
pp. 886-889
Author(s):  
Bao Long Lin

Based on the engineering background of Dongkeling tunnel of Guizhou-Guangzhou high-speed rail, construction process in soft surrounding rock is simulated by using finite difference software——FLAC according to large-deformation characteristics in water-rich and weathering altered granite weak surrounding rock. Several aspects, such as vault settlement, invert uplift, clearance convergence, surface settlement, the maximum and minimum principal stress of the initial support and plastic zone of surrounding rock, are analyzed to determine the tunnel stability with different construction methods.


2021 ◽  
Author(s):  
Jiaqi GUO ◽  
Wenlong Wu ◽  
Xiliang Liu ◽  
Xin Huang ◽  
Zhengguo Zhu

Abstract This paper took into account the adverse influence of the karst water seepage effect on the water-resistant rock mass. Based on the upper-bound theorem of limit analysis and the Hoek-Brown failure criterion, through a series of formula derivation, the expression of critical safety thickness of water-resistant rock mass of karst tunnel face was finally obtained. The paper carried out a feasibility analysis, an analysis of influencing factors and a comparative analysis with previous related research achievements of this method. The results showed that: (1) With the decrease of surrounding rock grade, the safety thickness of water-resistant rock mass gradually increased, and the safety thickness of surrounding rock at all grades remained within a reasonable range. (2) The safety thickness decreased as the compressive strength, the tensile strength and parameter A increased, and it increased as the karst water pressure, the tunnel excavation height, and parameter B increased. (3) The change trend of the safety thickness with the influencing factors was completely consistent under the two conditions of considering and without the seepage effect, and the safety thickness with considering the seepage force was greater than that without considering the seepage force. Taking the Yunwushan tunnel of Yiwan railway as an example, the critical safety thickness of the water-resistant rock mass was calculated and the calculated value was in good coincidence with the safety thickness adopted in the actual project. The research results are of great significance to prevent the occurrence of high pressure filling karst geological disasters such as water inrush in tunnels.


2020 ◽  
Vol 38 (5) ◽  
pp. 5511-5521
Author(s):  
Xuxin Chen ◽  
Ping He ◽  
Dumin Yan ◽  
Aoxiang Nie

2012 ◽  
Vol 487 ◽  
pp. 64-68
Author(s):  
Qian Zhang ◽  
Hai Xia Zhang ◽  
Jin Xing Lai

Backed up by Dayoushan loess tunnel of Xining in Qinghai province, the displacements of vault settlement, peripheral convergence, surface deformation and post-construction settlement caused by tunnel construction are numerically simulated and analyzed. First, 2-D elastic-plastic model is founded to simulate the tunnel excavation process with up and down steps method. Second, considering the rheological characteristics of loess, 2-D visco-elastic-plastic constitutive model is founded to simulate the creep deformation of rock displacement characteristics. Finally, combined with the serious collapsible feature of loess foundation in supported project, the post-construction settlements under different conditions are simulated to obtain the settlement values of tunnel vault and bottom. The results can explain the deformation laws of tunnel displacement characteristics reasonably and show the importance of foundation reinforcement measures for loess tunnel.


2019 ◽  
Vol 38 (2) ◽  
pp. 1379-1388
Author(s):  
Haorong Cao ◽  
Limin Peng ◽  
Mingfeng Lei ◽  
Qianlong Tang ◽  
Long Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document