Relationship Between Land Cover Ratio and Urban Heat Island from Remote Sensing and Automatic Weather Stations Data

2011 ◽  
Vol 39 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Xingping Wen ◽  
Xiaofeng Yang ◽  
Guangdao Hu
2021 ◽  
Vol 187 ◽  
pp. 107390
Author(s):  
Garegin Tepanosyan ◽  
Vahagn Muradyan ◽  
Azatuhi Hovsepyan ◽  
Gleb Pinigin ◽  
Andrey Medvedev ◽  
...  

2011 ◽  
Vol 6 (1) ◽  
pp. 27-34 ◽  
Author(s):  
R. Hamdi ◽  
H. Van de Vyver

Abstract. In this letter, the Brussels's urban heat island (UHI) effect on the near-surface air temperature time series of Uccle (the national suburban recording station of the Royal Meteorological Institute of Belgium) was estimated between 1955 and 2006 during the summer months. The UHI of Brussels was estimated using both ground-based weather stations and remote sensing imagery combined with a land surface scheme that includes a state-of-the-art urban parameterization, the Town Energy Balance scheme. Analysis of urban warming based on the remote sensing method reveals that the urban bias on minimum air temperature is rising at a higher rate, 2.5 times (2.85 ground-based observed) more, than on maximum temperature, with a linear trend of 0.15 °C (0.19 °C ground-based observed) and 0.06 °C (0.06 °C ground-based observed) per decade respectively. The summer-mean urban bias on the mean air temperature is 0.8 °C (0.9 °C ground-based observed). The results based on remote sensing imagery are compatible with estimates of urban warming based on weather stations. Therefore, the technique presented in this work is a useful tool in estimating the urban heat island contamination in long time series, countering the drawbacks of an ground-observational approach.


Author(s):  
A. Vyas ◽  
B. Shastri ◽  
Y. Joshi

As per the current estimates, nearly half of the world’s population lives in the cities, by 2030 it is calculated to increase to 70%. This calls for a need of more sustainable structure in the urban areas as to support increase in the urban population. Urban Heat Island is one such conspicuous phenomenon which has its significance at local regional and also at the global levels. It is a microscale temperature variation between urban and rural areas, in which urban area are warmer compare to surrounding rural area. The temperature difference between the urban and the rural areas are usually modest, averaging less than 1°C, but occasionally rising to several degrees when urban, topographical and meteorological conditions are favorable for the UHI to develop. It is defined as the phenomena where in the occurrence of surface and atmospheric modifications due to the urbanization causes modification in the thermal climatic conditions which results into warmer areas as compared to the surrounding non urbanized areas, particularly in night. In that case urban built forms such as buildings, roofs, pavements etc. absorb more solar heat/radiation and remain warmer throughout the day time and slowly release energy during night time. The two major causes are rapid urbanization and anthropogenic heat generated due to transport and industrial activities. Urban Heat Island is a crucial subject for global environment. Urbanization has significant effects on local weather and climate. Among these effects one of the most popular is the urban heat island, for which the temperatures of the central urban locations are several degrees higher than those of nearby rural areas of similar elevation. Satellite data provides important inputs for estimating regional surface albedo and evapo-transpiration required in the studies related to surface energy balance. <br><br> The phenomenon of UHI affects environment and population in so many ways it can also be considered as an active element that cause vulnerabilities to human health, the marginal population affected largely as the natural environment is their only home or their main shelter. Furthermore elderly people also affected in greater amount as their weakening immunes system. Major effects of UHI on environment include: a) Air Quality, b) Energy consumption and c) Human health. <br><br> To study the causes and effect of UHI of any urban area, the first step is to demarcate the spatial distribution of UHI and its intensity over different time period of the day as well as difference in the temperature of urban area with the surrounding rural areas. Secondly, study of land use land cover change in the area also helps in identifying causes of heat accumulation for particular region. After marking up of intensity, analysis of different zones for understanding the relationship between UHI and urban morphological features can be done which further became suggestive towards planning of urban center that mitigates the effect of UHI. Mainly two approaches are there to demarcate UHI study as: <br><br> &ndash; Field data collection and observations <br> &ndash; Remote sensing data analysis <br><br> For a long period of time observations from interior of the city and outwards of it can analyze by a climatic methods, by observing many days as well as many times of a day continuously to analyze the daily variation law of the heat island effects. As the city is for its developmental approaches may cover an area of hundreds of square kilometers, the ground observation data is not able to provide enough detail about the urban heat island distribution characteristics. The most precise method is the Satellite Remote Sensing method. The UHI phenomenon can be analyzed by using the thermal infrared data obtained meteorological satellite sensing. The atmospheric attenuation can be corrected for the remote sensing data by use of meteorological soundings and ground observation data. Ideally the heat island effect over a city is not same for any other city. <br><br> Satellite images from AVHRR Advanced Very High Resolution Radiometer) or ENVISAT AATSR provides thermal infrared data and comparatively easy to acquire, process and analyze. In the case of Ahmedabad city, land cover changes over the time is to be studied by classifying the image and then temperature can be derived by using a quadratic regression model from Malaret at al. (1985). Band 6 produces the images that show the relative difference emitted thermal energy that correlate in part with the effects of solar heating on surface of varying composition and orientation. The surface temperatures are suitable to detect UHI at Urban canopy level. Nichol (1996) found that surface temperatures extracted are moreover similar to the actual ambient air temperatures recorded. <br><br> The paper has narrated analylitical framework on which the research has been carried out. The result derived on Land Surface Temperature variation causing Urban Heat Island, its relationship with the land use land cover. A time series data has been used. Authors are thankful to Ms. Darshana Rawal, Ms. Pallavi Knahdewal and Mr. Hardik Panchal.


2012 ◽  
Vol 25 (18) ◽  
pp. 6193-6201 ◽  
Author(s):  
Menglin S. Jin

Abstract A new index of calculating the intensity of urban heat island effects (UHI) for a city using satellite skin temperature and land cover observations is recommended. UHI, the temperature difference between urban and rural regions, is traditionally identified from the 2-m surface air temperatures (i.e., the screen-level temperature T2m) measured at a pair of weather stations sited in urban and rural locations. However, such screen-level UHI is affected by the location, distance, and geographic conditions of the pair of weather stations. For example, choosing a different pair of rural and city sites leads to a different UHI intensity for the same city, due to the high heterogeneity of the urban surface temperature. To avoid such uncertainty, satellite-observed surface skin temperature measurements (i.e., skin level temperature Tskin) is recommended to record UHI, known as skin-level UHI or UHIskin. This new index has advantages of high spatial resolution and aerial coverage to better record UHI intensity than T2m. An assessment of skin-level UHI from 10 yr of the National Aeronautics and Space Administration (NASA)’s Moderate Resolution Imaging Spectroradiometer (MODIS) observations reveals that skin-level UHI has a strong UHI signal during the day and at night. In addition, there are significant diurnal and seasonal variations in skin-level UHI. Furthermore, the skin-level UHI is stronger during the day and summer (July) than during nighttime and winter. This new index is important for more uniformly assessing UHIs over cities around the globe. Nevertheless, whether the seasonality and diurnal variations revealed in this work using skin-level UHI index are valid over desert cities, such as Phoenix, Arizona, need to be examined.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


Author(s):  
Valentino Sangiorgio ◽  
Alessandra Capolupo ◽  
Eufemia Tarantino ◽  
Francesco Fiorito ◽  
Mattheos Santamouris

2019 ◽  
Vol 45 ◽  
pp. 686-692 ◽  
Author(s):  
Niloufar Shirani-bidabadi ◽  
Touraj Nasrabadi ◽  
Shahrzad Faryadi ◽  
Adnan Larijani ◽  
Majid Shadman Roodposhti

Sign in / Sign up

Export Citation Format

Share Document