Simultaneous identification of joint compliance and kinematic parameters of industrial robots

2014 ◽  
Vol 15 (11) ◽  
pp. 2257-2264 ◽  
Author(s):  
Jian Zhou ◽  
Hoai-Nhan Nguyen ◽  
Hee-Jun Kang
2020 ◽  
Vol 900 ◽  
pp. 35-43
Author(s):  
Yunn Lin Hwang ◽  
Jung Kuang Cheng ◽  
Thanh Dat Pham

The simulation and application of industrial robots has developed very quickly in recent decades. Along with the development of computer science, a lot of softwares to perform dynamic simulation have been created. The results of simulation can be used for layout evaluation, kinematic, dynamic study, off-line programming to avoid obstacle and for design mechanical structure of robots. A co-simulation of 2R industrial robots have been performed by Recurdyn and Matlab. The input parameters are executed under Matlab, and then exported to Recurdyn environment. Kinematic parameters will be executed by RecurDyn then exported to Matlab. The main tasks of this paper are performing 2R robotic manipulator kinematic simulation in two postures with the same trajectory and the same time. Thus, the result of simulation can be compared with theories. Finally, a real 2R robot model was used to verify the trajectory with CAE simulation.


2014 ◽  
Vol 889-890 ◽  
pp. 1136-1143
Author(s):  
Yong Gui Zhang ◽  
Chen Rong Liu ◽  
Peng Liu

For an industrial robots with unknown parameters, on the basis of preliminary measurement and data of the Cartesian and joints coordinates which are shown on the FlexPendant, the kinematic parameters is identified by using genetic algorithms and accurate kinematics modeling of the robot is established. Experimental data could prove the validity of this method.


2019 ◽  
Vol 16 (5) ◽  
pp. 172988141988307 ◽  
Author(s):  
Yahui Gan ◽  
Jinjun Duan ◽  
Xianzhong Dai

Calibration of robot kinematic parameters can effectively improve the absolute positioning accuracy of the end-effector for industrial robots. This article proposes a calibration method for robot kinematic parameters based on the drawstring displacement sensor. Firstly, the kinematic error model for articulated robot is established. Based on such a model, the position measurement system consisting of four drawstring displacement sensors is used to measure the actual position of the robot end-effector. Then, the deviation of the kinematic parameters of the robot is identified by the least-squares method according to robot end-effector deviations. The Cartesian space compensation method is adopted to improve the absolute positioning accuracy of the robot end-effecter. By experiments on the EFORT ER3A robot, the absolute positioning accuracy of the robot is significantly improved after calibration, which shows the effectiveness of the proposed method.


Author(s):  
Wei Wang ◽  
Gang Wang ◽  
Chao Yun

Purpose – Calibrating kinematic parameters is one of the efficient ways to improve the robot's positioning accuracy. A method based on the product-of-exponential (POE) formula to calibrate the kinematic parameters of serial industrial robots is proposed. The paper aims to discuss these issues. Design/methodology/approach – The forward kinematics is established, and the general positioning error model is deduced in an explicit expression. A simplified model of robot's positioning error is established as both the error of reference configuration and the error of rigid displacement of the base coordinating system with respect to the measuring coordinating system are equivalently transferred to the zero position errors of the robot's joints. A practical calibration model is forwarded only requiring 3D measuring based on least-squares algorithm. The calibration system and strategy for calibrating kinematic parameters are designed. Findings – By the two geometrical constrains between the twist coordinates, each joint twist only has four independent coordinates. Due to the equivalent error model, the zero position error of each joint can cover the error of reference configuration and rigid displacement of the robot base coordinating system with respect to the measuring coordinating system. The appropriate number of independent kinematic parameters of each joint to be calibrated is five. Originality/value – It is proved by a group of calibration experiments that the calibration method is well conditioned and can be used to promote the level of absolute error of end effector of industrial robot to 2.2 mm.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
David Alejandro Elvira-Ortiz ◽  
Rene de Jesus Romero-Troncoso ◽  
Arturo Yosimar Jaen-Cuellar ◽  
Luis Morales-Velazquez ◽  
Roque Alfredo Osornio-Rios

Vibration is a phenomenon that is present on every industrial system such as CNC machines and industrial robots. Moreover, sensors used to estimate angular position of a joint in an industrial robot are severely affected by vibrations and lead to wrong estimations. This paper proposes a methodology for improving the estimation of kinematic parameters on industrial robots through a proper suppression of the vibration components present on signals acquired from two primary sensors: accelerometer and gyroscope. A Kalman filter is responsible for the filtering of spurious vibration. Additionally, a sensor fusion technique is used to merge information from both sensors and improve the results obtained using each sensor separately. The methodology is implemented in a proprietary hardware signal processor and tested in an ABB IRB 140 industrial robot, first by analyzing the motion profile of only one joint and then by estimating the path tracking of two welding tasks: one rectangular and another one circular. Results from this work prove that the sensor fusion technique accompanied by proper suppression of vibrations delivers better estimation than other proposed techniques.


2015 ◽  
Vol 762 ◽  
pp. 267-270 ◽  
Author(s):  
Constantin Popa ◽  
Mihaela Florentina Duţu ◽  
Luminiţa Voiculescu ◽  
Alina Ovanisof ◽  
Maria Dragomir

The efficiency of the technological operations executed by robots depends on how their kinematic parameters were calculated. This paper presents the exactly calculus of the robots kinematics parameters. As the algorithm has a substantial number of operations, it is necessary to use the computer.


Sign in / Sign up

Export Citation Format

Share Document