A Study on Activation Algorithm of Finite Elements for Three-Dimensional Transient Heat Transfer Analysis of Directed Energy Deposition Process

Author(s):  
Bih-Lii Chua ◽  
Ho-Jin Lee ◽  
Dong-Gyu Ahn ◽  
Yeqing Wang
2019 ◽  
Vol 304 ◽  
pp. 01023
Author(s):  
Adrien Doux ◽  
Vincent Philippe

Directed Energy Deposition (DED) Additive Manufacturing (AM) processes have a great potential to be used as cost-effective and efficient repairing and re-manufacturing processes for aerospace components such as turbine blades and landing gears. The AMOS project intends to connect repair and re-manufacturing strategies with design through accurate DED process simulation and novel multi-disciplinary design optimisation (MDO) methods. The ultimate goal is to reduce aerospace component weaknesses at design stage and prolong their lifecycles. DED AM processes are multi-physical phenomena involving high laser power melting powder or wire on a substrate. An experimental heat source has been calibrated using a heat transfer analysis of IN718 laser and powder AM on a sample part. Residual stresses and final distortion are also computed using thermal field and the evolving part distortion at each increment. Multiple hypotheses have been considered model the molten pool creation on the Heat Affected Zone (HAZ).


2020 ◽  
Vol 26 ◽  
pp. 1108-1112 ◽  
Author(s):  
B.N. Manjunath ◽  
A.R. Vinod ◽  
K. Abhinav ◽  
S.K. Verma ◽  
M. Ravi Sankar

2019 ◽  
Vol 62 (4) ◽  
pp. 213-217 ◽  
Author(s):  
Abdollah Saboori ◽  
Sara Biamino ◽  
Mariangela Lombardi ◽  
Simona Tusacciu ◽  
Mattia Busatto ◽  
...  

Author(s):  
Jianyi Li ◽  
Qian Wang ◽  
Panagiotis (Pan) Michaleris

In modeling and simulating thermo-mechanical behavior in a directed energy deposition process, it often needs to compute the temperature field evolved in the deposition process since thermal history in the deposition process would affect part geometry as well as microstructure, material properties, residual stress, and distortion of the final part. This paper presents an analytical computation of temperature field evolved in a directed energy deposition process, using a single-bead wall as an illustrating example. Essentially, the temperature field is computed by superposition of the temperature fields generated by the laser source as well as induced from each of the past beads, where the transient solution to a moving heat source in a semi-infinite body is applied to describe each individual temperature field. For better characterization of cooling effect (temperature contribution from a past bead), a pair of positive and negative virtual heat sources is assigned for each past bead. In addition, mirrored heat sources through a reflexion technique are introduced to define the adiabatic boundaries of the part being built and to account for the substrate thickness. In the end, three depositions of Ti-6AL-4V walls with different geometries and inter-layer dwell times on an Optomec® laser engineered net shaping (LENS) system are used to validate the proposed analytical computation, where predicted temperatures at several locations of the depositions show reasonable agreement with the in situ temperature measurements, with the average prediction error less than 15%. The proposed analytical computation for temperature field in directed energy deposition could be potentially used in model-based feedback control for thermal history in the deposition, which could affect microstructure evolution and other properties of the final part.


Sign in / Sign up

Export Citation Format

Share Document