Post-processing of Laser Additive Manufactured Inconel 718 Using Laser Shock Peening

2019 ◽  
Vol 20 (9) ◽  
pp. 1621-1628 ◽  
Author(s):  
A. N. Jinoop ◽  
S. Kanmani Subbu ◽  
C. P. Paul ◽  
I. A. Palani
Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Muhammad Arif Mahmood ◽  
Diana Chioibasu ◽  
Asif Ur Rehman ◽  
Sabin Mihai ◽  
Andrei C. Popescu

Additive manufacturing (AM) processes can produce three-dimensional (3D) near-net-shape parts based on computer-aided design (CAD) models. Compared to traditional manufacturing processes, AM processes can generate parts with intricate geometries, operational flexibility and reduced manufacturing time, thus saving time and money. On the other hand, AM processes face complex issues, including poor surface finish, unwanted microstructure phases, defects, wear tracks, reduced corrosion resistance and reduced fatigue life. These problems prevent AM parts from real-time operational applications. Post-processing techniques, including laser shock peening, laser polishing, conventional machining methods and thermal processes, are usually applied to resolve these issues. These processes have proved their capability to enhance the surface characteristics and physical and mechanical properties. In this study, various post-processing techniques and their implementations have been compiled. The effect of post-processing techniques on additively manufactured parts has been discussed. It was found that laser shock peening (LSP) can cause severe strain rate generation, especially in thinner components. LSP can control the surface regularities and local grain refinement, thus elevating the hardness value. Laser polishing (LP) can reduce surface roughness up to 95% and increase hardness, collectively, compared to the as-built parts. Conventional machining processes enhance surface quality; however, their influence on hardness has not been proved yet. Thermal post-processing techniques are applied to eliminate porosity up to 99.99%, increase corrosion resistance, and finally, the mechanical properties’ elevation. For future perspectives, to prescribe a particular post-processing technique for specific defects, standardization is necessary. This study provides a detailed overview of the post-processing techniques applied to enhance the mechanical and physical properties of AM-ed parts. A particular method can be chosen based on one’s requirements.


Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 139-143
Author(s):  
Ji Xinglu ◽  
Zhou Jianzhong ◽  
Huang Su ◽  
Chen Hansong ◽  
Xie Xiaojiang ◽  
...  

Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Ji Xinglu ◽  
Zhou Jianzhong ◽  
Huang Su ◽  
Chen Hansong ◽  
Xie Xiaojiang ◽  
...  

Author(s):  
Kuldeep Singh Sidhu ◽  
Yachao Wang ◽  
Jing Shi ◽  
Vijay K. Vasudevan ◽  
Seetha Ramaiah Mannava

Abstract This study investigates the effects of laser shock peening (LSP) on residual stress, near surface modification, and hardness of Inconel 718 (IN718) specimens manufactured by selective laser melting (SLM) technique. Optical microscope and electron backscattered diffraction (EBSD) is used to characterize the microstructures of both heat-treated and as-built specimens. A nanoindentation test is performed to determine the properties such as the hardness of as-built and heat-treated specimens. Afterward, the hardness along the distance from the LSP treated surface is also defined. To investigate the effect of LSP energy on the mechanical properties of specimens, two levels of LSP energy, e.g., low energy LSP (6.37 GW/cm2) and high energy LSP (8.60 GW/cm2), are carried out on selected samples. With the increase in laser energy density, it is found that both compressive residual stress and hardness increase after LSP treatment. The as-built specimens after high energy LSP treatment show the compressive residual stress of −875 MPa, and the surface hardness increases from 468 HV to 853 HV.


2018 ◽  
Vol 335 ◽  
pp. 32-40 ◽  
Author(s):  
Zhaopeng Tong ◽  
Xudong Ren ◽  
Yunpeng Ren ◽  
Fengze Dai ◽  
Yunxia Ye ◽  
...  

2021 ◽  
Author(s):  
D. S. Shtereveria ◽  
A. A. Volkova ◽  
A. A. Kholopov ◽  
M. A. Melnikova ◽  
D. M. Melnikov

Sign in / Sign up

Export Citation Format

Share Document