Finite Element and Experiment Study on the Effect of Temperature and Laser Intensity on Warm Laser Shock Peening Ni-Based Superalloy Inconel 718

Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 139-143
Author(s):  
Ji Xinglu ◽  
Zhou Jianzhong ◽  
Huang Su ◽  
Chen Hansong ◽  
Xie Xiaojiang ◽  
...  
Applied laser ◽  
2013 ◽  
Vol 33 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Ji Xinglu ◽  
Zhou Jianzhong ◽  
Huang Su ◽  
Chen Hansong ◽  
Xie Xiaojiang ◽  
...  

Author(s):  
A. W. Warren ◽  
Y. B. Guo ◽  
S. C. Chen

Laser shock peening (LSP) is a surface treatment process to improve the surface integrity of metallic components. The nearly pure mechanical process of LSP results in favorable surface integrity such as compressive residual stress and improved surface material properties. Since LSP is a transient process with laser pulse duration time on the order of 40 ns, real time in-situ measurement of laser/material interaction is very challenging, if not impossible. A fundamental understanding of laser/material interactions is essential for LSP planning. Previous finite element simulations of LSP have been limited to a single laser shock location for both two and three dimensional modeling. However, actual LSP are performed in a massively parallel mode which involves almost simultaneous multi-laser/material interactions in order to induce uniform compressive residual stress across the entire surface of the workpiece. The massively parallel laser/material interactions have a significant compound/interfering effect on the resulting surface integrity of the workpiece. The numerical simulation of shock pressure as a function of time and space during LSP is another critical problem. The purpose of this paper is to investigate the effects of parallel multiple laser/material interactions on the stress/strain distributions in the workpiece during LSP of AISI 52100 steel. FEA simulations of LSP in single and multiple passes were performed with the developed spatial and temporal shock pressure model via a subroutine. The simulated residual stresses agree with the measured data in nature and trend, while magnitude can be influenced by the interactions between neighboring peening zones and the locations of residual stress measurement. Design-of-experiment (DOE) based simulations of massive parallel LSP were also performed to determine the effects of laser intensity, laser spot size, and peening spacing on stresses and strains. Increasing the laser intensity increases both the stress magnitude and affected depth. The use of smaller laser spot sizes decreases the largest magnitude of residual stress and also decreases the depth affected by LSP. Larger spot sizes have less energy attenuation and cause more plastic deformation. Spacing between peening zones is critical for the uniformity of mechanical properties across the surface. The greatest uniformity and largest stress magnitudes are achieved by overlapping of the laser spots.


Author(s):  
Yunfeng Cao ◽  
Yung C. Shin ◽  
Benxin Wu

Laser shock peening (LSP) under water confinement regime involves several complicated physical phenomena. Among these phenomena, the interaction between laser and coating material during LSP is very important to the laser-induced residual stress, which has an important effect on the fatigue and corrosion properties of the substrate material. To gain a better understanding of this interaction, a series of experiments, including single shot, single-track overlapping, and multitrack overlapping LSP, has been carried out on various metals with different coatings. A 3D finite element model has also been developed to simulate the LSP process. Combining this with a previously developed confined plasma model, which has been verified by the experimental data from literature, the 3D finite element model is used to predict the residual stresses induced in the substrate material as well as the indentation profile on the substrate surface. The model prediction of indentation profiles is compared with the experimental data. The residual stresses in the depth direction are also validated against the X-ray diffraction measurement data for 4140 steel and Ti–6Al–4V, and good agreements are obtained for both predictions. The effect of process parameters on the residual stress is also investigated both experimentally and theoretically.


Author(s):  
Bo Mao ◽  
Yiliang Liao ◽  
Bin Li

Abstract In this paper, the surface microstructure evolution of an AZ31B magnesium (Mg) alloy during laser shock peening (LSP) was investigated. Particular attention was paid to the deformation twinning behavior, which plays an important role in the mechanical properties of Mg alloys. The effect of laser intensity on the twinning distribution was investigated. Twin-twin interactions during LSP process were characterized. The mechanism responsible for the formation of gradient twinning microstructure and twinning-induced hardening effect were discussed.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 93 ◽  
Author(s):  
Kristina Langer ◽  
Thomas J. Spradlin ◽  
Michael E. Fitzpatrick

Laser shock peening has become a commonly applied industrial surface treatment, particularly for high-strength steel and titanium components. Effective application to aluminum alloys, especially in the thin sections common in aerospace structures, has proved more challenging. Previous work has shown that some peening conditions can introduce at-surface tensile residual stress in thin Al sections. In this study, we employ finite element modeling to identify the conditions that cause this to occur, and show how these adverse effects can be mitigated through selection of peen parameters and patterning.


Sign in / Sign up

Export Citation Format

Share Document