Control Algorithms of Magnetic Suspension Systems Based on the Improved Double Exponential Reaching Law of Sliding Mode Control

2018 ◽  
Vol 16 (6) ◽  
pp. 2878-2887 ◽  
Author(s):  
Jian Pan ◽  
Wei Li ◽  
Haipeng Zhang
Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1788 ◽  
Author(s):  
Linyun Xiong ◽  
Penghan Li ◽  
Hao Li ◽  
Jie Wang

2015 ◽  
Vol 741 ◽  
pp. 655-658 ◽  
Author(s):  
Cai Yun Dong ◽  
Hai Jun Wang ◽  
Wen Yong Cui

The sliding mode control approach based on double power exponential reaching law is proposed for the hydraulic servo system. With the example of the hydraulic servo system in the lab, the mathematic model is established and the new controller is presented and simulated. Simulation results show that: the proposed approach has high track precision, fast response, small chattering and ensures dynamic quality of the system.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1776
Author(s):  
Changhong Jiang ◽  
Qiming Wang ◽  
Zonghao Li ◽  
Niaona Zhang ◽  
Haitao Ding

When a permanent magnet synchronous motor runs at low speed, the inverter will output discontinuous current and generate torque ripple; when the motor is runs at high speed, a large amount of stator harmonic current generates, which affects its speed following ability and torque stability. To ensure the fast and smooth switching of a permanent magnet synchronous motor in the full speed domain, this paper proposes the nonsingular terminal sliding mode control of PMSM speed control based on the improved exponential reaching law. Firstly, the improved exponential reaching law is composed of the state variables and power terms of the sliding mode surface functions. The reaching law function is designed in sections to balance the fast dynamic response of the system and chattering control. Secondly, an improved exponential reaching law based on the sliding mode control strategy of the PMSM speed loop is proposed. By designing the initial value of the integral term in the nonsingular terminal sliding mode surface function, the initial state of the system is located on the sliding mode surface. The integral sliding mode surface is used to reduce the system steady-state error, while the proposed sliding mode reaching law is used to increase the arrival speed and suppress system chattering, ultimately affecting modeling error problems, complex working conditions, and uncertainty factors. This paper proposes a sliding mode observer based on an improved exponential reaching law to compensate for the disturbances. Lyapunov stability theory can prove that this system can make the speed tracking error converge to zero in finite time. Hardware-in-the-loop experiments were used to validate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document