Robust Mixed H2/H∞ Control for An Uncertain Wireless Sensor Network Systems with Time Delay and Packet Loss

Author(s):  
Yuanbo Shi ◽  
Jianhui Wang ◽  
Xiaoke Fang ◽  
Yueyang Huang ◽  
Shusheng Gu
Author(s):  
Le Quang Bon ◽  

The objective of this article is to identify current trends and prospects for the use of technical facilities and installations to prevent the spread of wildfires by analyzing the literature. The analysis of the literature has allowed an analysis of different ground-based wildfire detection and monitoring systems: optical sensors and digital camera systems, and wireless sensor network systems. The author concludes that the wireless sensor network can be seen as a partial solution when used in combination with other technologies. Keywords—observation towers, optical systems, optical sensors, digital cameras, wireless sensor network.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771772269 ◽  
Author(s):  
Alejandro Cama-Pinto ◽  
Gabriel Piñeres-Espitia ◽  
José Caicedo-Ortiz ◽  
Elkin Ramírez-Cerpa ◽  
Leonardo Betancur-Agudelo ◽  
...  

Today, through the monitoring of agronomic variables, the wireless sensor networks are playing an increasingly important role in precision agriculture. Among the emerging technologies used to develop prototypes related to wireless sensor network, we find the Arduino platform and XBee radio modules from the DIGI Company. In this article, based on field tests, we conducted a comparative analysis of received strength signal intensity levels, calculation of path loss with “log-normal shadowing” and free-space path loss models. In addition, we measure packet loss for different transmission, distances and environments with respect to an “Arduino Mega” board, and radio modules XBee PRO S1 and XBee Pro S2. The tests for the packet loss and received strength signal intensity level show the best performance for the XBee Pro S2 in the indoor, outdoor, and rural scenarios.


2016 ◽  
Vol 15 (6) ◽  
pp. 6850-6856
Author(s):  
V. Upendran ◽  
R. Dhanapal

Security and energy efficiency is of paramount importance in a wireless sensor network. This is due to their vulnerabledeployment conditions and battery based power. This paper presents a secure and distributed algorithm that generatesroutes on-demand in a wireless sensor network. Dynamic route generation is facilitated by PSO, a metaheuristictechnique. Current network traffic in that route and charge contained in the candidate node are used as evaluationparameters along with the node distance, hence a huge reduction in the packet loss was observed. Experiments wereconducted and it was observed that the proposed algorithm exhibits very low selection overhead and also providesdistributed routs, which eventually lead to prolonged network lifetime.


10.29007/h7cg ◽  
2018 ◽  
Author(s):  
Geerija Lavania ◽  
Preeti Sharma ◽  
Richa Upadhyay

The wireless sensor network is the network that has large number of sensor nodes that are connected to each other. The wireless nodes sense the event and forward packets to the destination node. A transport layer handles congestion and packet loss recovery for reliable data transfer in WSN. There exist several protocols at the transport layer in WSN for reliable data transfer like ESRT, ATP, Tiny TCP/IP, PORT, CTCP, RTMC, DCDD, RETP etc. Each protocol has its merits and demerits. Traditional network uses TCP and UDP protocol at the transport layer. In WSN, these are not suitable. In this work, the TCP, SCTP and MPTCP are compared in the wireless sensor network environment. The wireless network with packet loss is considered. From the comparative analysis, we get the result that MPTCP gives the better performance than TCP and SCTP in the wireless sensor network.


Sign in / Sign up

Export Citation Format

Share Document