scholarly journals Comparative Analysis of TCP, SCTP and MPTCP in Transport Layer of Wireless Sensor Networks

10.29007/h7cg ◽  
2018 ◽  
Author(s):  
Geerija Lavania ◽  
Preeti Sharma ◽  
Richa Upadhyay

The wireless sensor network is the network that has large number of sensor nodes that are connected to each other. The wireless nodes sense the event and forward packets to the destination node. A transport layer handles congestion and packet loss recovery for reliable data transfer in WSN. There exist several protocols at the transport layer in WSN for reliable data transfer like ESRT, ATP, Tiny TCP/IP, PORT, CTCP, RTMC, DCDD, RETP etc. Each protocol has its merits and demerits. Traditional network uses TCP and UDP protocol at the transport layer. In WSN, these are not suitable. In this work, the TCP, SCTP and MPTCP are compared in the wireless sensor network environment. The wireless network with packet loss is considered. From the comparative analysis, we get the result that MPTCP gives the better performance than TCP and SCTP in the wireless sensor network.

Author(s):  
Omer Aziz ◽  
Benny Lo ◽  
Julien Pansiot ◽  
Louis Atallah ◽  
Guang-Zhong Yang ◽  
...  

Over the past decade, miniaturization and cost reduction in semiconductors have led to computers smaller in size than a pinhead with powerful processing abilities that are affordable enough to be disposable. Similar advances in wireless communication, sensor design and energy storage have meant that the concept of a truly pervasive ‘wireless sensor network’, used to monitor environments and objects within them, has become a reality. The need for a wireless sensor network designed specifically for human body monitoring has led to the development of wireless ‘body sensor network’ (BSN) platforms composed of tiny integrated microsensors with on-board processing and wireless data transfer capability. The ubiquitous computing abilities of BSNs offer the prospect of continuous monitoring of human health in any environment, be it home, hospital, outdoors or the workplace. This pervasive technology comes at a time when Western world health care costs have sharply risen, reflected by increasing expenditure on health care as a proportion of gross domestic product over the last 20 years. Drivers of this rise include an ageing post ‘baby boom’ population, higher incidence of chronic disease and the need for earlier diagnosis. This paper outlines the role of pervasive health care technologies in providing more efficient health care.


2015 ◽  
Vol 87 (2) ◽  
pp. 431-442 ◽  
Author(s):  
N. M. Saravana Kumar ◽  
S. Deepa ◽  
C. N. Marimuthu ◽  
T. Eswari ◽  
S. Lavanya

2017 ◽  
Vol 13 (7) ◽  
pp. 155014771772269 ◽  
Author(s):  
Alejandro Cama-Pinto ◽  
Gabriel Piñeres-Espitia ◽  
José Caicedo-Ortiz ◽  
Elkin Ramírez-Cerpa ◽  
Leonardo Betancur-Agudelo ◽  
...  

Today, through the monitoring of agronomic variables, the wireless sensor networks are playing an increasingly important role in precision agriculture. Among the emerging technologies used to develop prototypes related to wireless sensor network, we find the Arduino platform and XBee radio modules from the DIGI Company. In this article, based on field tests, we conducted a comparative analysis of received strength signal intensity levels, calculation of path loss with “log-normal shadowing” and free-space path loss models. In addition, we measure packet loss for different transmission, distances and environments with respect to an “Arduino Mega” board, and radio modules XBee PRO S1 and XBee Pro S2. The tests for the packet loss and received strength signal intensity level show the best performance for the XBee Pro S2 in the indoor, outdoor, and rural scenarios.


Sign in / Sign up

Export Citation Format

Share Document