Factor and cluster analysis of water quality data of the groundwater wells of Kushtia, Bangladesh: Implication for arsenic enrichment and mobilization

2013 ◽  
Vol 81 (3) ◽  
pp. 377-384 ◽  
Author(s):  
Md. Golzar Hossain ◽  
A. H. M. Selim Reza ◽  
Mst. Lutfun-Nessa ◽  
Syed Samsuddin Ahmed
2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Jalal Valiallahi ◽  
Saideh Khaffaf Roudy

AbstractIn the present study, evaluation of spatial variations and interpretation of Zohrehh River water quality data were made by using multivariate analytical techniques including factor analysis and cluster analysis also the Arc GIS® software was used. The research method was formulated to achieve objectives herein, including field observation, numerical modeling, and laboratory analyses. The results showed that dataset consisted of 11,250 observations of seven-year monitoring program (measurement of 15 variables at 3 main stations from April 2010 to March 2017). Factor analysis with principal component analysis extraction of the dataset yielded seven varactors contributing to 82% of total variance and evaluated the incidence of each varactor on the total variance. The results of cluster analysis became complete with t-test and made water quality comparison between two clusters possible. Results of factor analysis were employed to facilitate t-test analysis. The t-test revealed the significant difference in a confidence interval of 95% between the mean of calculated varactors 1, 2, 6 and 7 between two clusters, but there was no significant difference in the mean of other varactors 3, 4 and 5 between two groups. The result shows the effect of agricultural fertilizers on stations located at downstream of the ASK dam.


2016 ◽  
Vol 38 (2) ◽  
pp. 577
Author(s):  
Nícolas Reinaldo Finkler ◽  
Taison Anderson Bortolin ◽  
Jardel Cocconi ◽  
Ludmilson Abritta Mendes ◽  
Vania Elisabete Schneider

The natural factors and anthropogenic activities that contribute to spatial and temporal variation in superficial waters in Caxias do Sul’s urban hydrographic basins were determined applying multivariate analysis of data. The techniques used in this study were Principal Component Analysis and Cluster Analysis. The monitoring was executed in 12 sampling stations, during January, 2009 to January, 2010 with monthly periodicity in total of 13 campaigns. Between chemical, biological and physical, 20 parameters were analyzed. The results state that with the use of ACP, a data variance of 70.94% was observed. Therefore, it testifies that major pollutants that contribute to a water quality variation in the county are classified as domestic and industrial pollutants, mainly from galvanic industry. Moreover, two clusters were found which differentiated regarding their location and distance from areas with a high human density, corroborating on identifying of impact due to human activities in urban rivers.


1993 ◽  
Vol 29 (8) ◽  
pp. 2705-2711 ◽  
Author(s):  
A. Maul ◽  
A. H. El-Shaarawi

2014 ◽  
Vol 496-500 ◽  
pp. 1919-1922
Author(s):  
Jun Ou ◽  
Shu Qing Li

In this paper, it has introduced cluster analysis of data mining algorithms in detail. Hierarchical clustering and partitioning method are emphasized. The principles of mathematics are elaborated. The monitoring system of water environment is composed of data collection, data transmission, data storage and data reasoning components. Cluster analysis applies to the data storage behavior. With the analysis, the key elements determining the water quality level are modeled easily. The modeling tools has created good quality information module, defining classes and attributes. It has reduced the database storage, analysis workload and prepared for effective ontology analysis.


Author(s):  
Innocent Rangeti ◽  
Bloodless Dzwairo

The major challenge with regular water quality monitoring programmes is making sense of the large and complex physico-chemical data-sets that are generated in a comparatively short period of time. Consequentially, this presents difficulties for water management practitioners who are expected to make informed decisions based on information extracted from the large data-sets. In addition, the nonlinear nature of water quality data-sets often makes it difficult to interpret the spatio-temporal variations. These reasons necessitated the need for effective methods of interpreting water quality results and drawing meaningful conclusions. Hence, this study applied multivariate techniques, namely Cluster Analysis and Principal Component Analysis, to interpret eight-year (2005–2012) water quality data that was generated from a monitoring exercise at six stations in uMngeni Basin, South Africa. The principal components extracted with eigenvalues of greater than 1 were interpreted while considering the pollution issues in the basin. These extracted components explain 67–76% of the water quality variation among the stations. The derived significant parameters suggest that uMngeni Basin was mainly affected by the catchment’s geological processes, surface runoff, domestic sewage effluent, seasonal variation and agricultural waste. Cluster Analysis grouped the sampling six stations into two clusters namely heavy (B) or low (A), based on the degree of pollution. Cluster A mainly consists of water sampling stations that were located in the outflow of the dam (NDO, IDO, MDO and NDI) and its water can be described as of fairly good quality due to dam retention and attenuation effects. Cluster B mainly consist of dam inflow water sampling stations (MDI and IDI), which can be described as polluted if compared to cluster A. The poor quality water observed at Cluster B sampling stations could be attributed to natural and anthropogenic activities through point source and runoff. The findings could assist in determining an appropriate set of water quality parameters that would indicate variation of water quality in the basin, with minimum loss of information. It is, therefore, recommended that this approach be used to assist decision-makers regarding strategies for minimising catchment pollution.


Sign in / Sign up

Export Citation Format

Share Document