Influence of aspect ratio and surrounding medium on Localized Surface Plasmon Resonance (LSPR) of gold nanorod

2012 ◽  
Vol 41 (2) ◽  
pp. 89-93 ◽  
Author(s):  
S. S. Verma ◽  
Jagmeet Singh Sekhon
The Analyst ◽  
2015 ◽  
Vol 140 (8) ◽  
pp. 2540-2555 ◽  
Author(s):  
Subramaniam Jayabal ◽  
Alagarsamy Pandikumar ◽  
Hong Ngee Lim ◽  
Ramasamy Ramaraj ◽  
Tong Sun ◽  
...  

This review describes recent advances in gold nanorod-based localized surface plasmon resonance sensors for detection of environmentally toxic metal ions.


NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550117
Author(s):  
Chao Liu ◽  
Jingwei Lv ◽  
Famei Wang ◽  
Qiang Liu ◽  
Haiwei Mu ◽  
...  

Multilayered nanoshells have attracted much attention due to their unique optical, electronic and magnetic properties. In this work, numerical calculation using discrete dipole approximation (DDA) is conducted to investigate the quad-layered metal nanoshell consisting of a particle with a dielectric silica (SiO2) core, inner cadium sulfide (CdS) shell, middle indium tin oxide (ITO) shell and outer metal silver (Ag) shell. The phenomenon is interpreted by plasmon hybridization theory and the Ag–ITO–CdS–SiO2 multilayered nanoshells are studied by extinction spectra of localized surface plasmon resonance. The variation in the spectrum peak with nanoparticle thickness and refractive index of the surrounding medium is derived. The electric field enhancement contour around the nanoparticles under illumination is analyzed at the plasmon resonance wavelength. The [Formula: see text], [Formula: see text], and [Formula: see text] modes red-shift with the refractive index of the surrounding medium and increase in the layer thickness causes either blue-shift or red-shift as shown by the extinction spectra. The mechanism of the red-shift or blue-shift is discussed. The [Formula: see text] mode blue-shifts and furthermore, the [Formula: see text] and [Formula: see text] modes of the Ag coated multilayered nanostructure are noticeable by comparing the extinction efficiency spectra of the Au–ITO–CdS–SiO2 and Ag–ITO–CdS–SiO2 multilayered nanoshells.


2006 ◽  
Vol 915 ◽  
Author(s):  
Tomofumi Arai ◽  
Penmetcha K. R. Kumar ◽  
Koichi Awazu ◽  
Junji Tominaga

AbstractIn this paper, an optical biosensor based on the localized surface plasmon resonance (LSPR) of Ag nanostructured films is proposed and demonstrated. The Ag nanostructured films, which are fabricated by the reduction of AgOx thin films, exhibit a strong LSPR at wavelengths around 370 nm in an air environment. The reflectance spectra of the Ag nanostructured film represent that the shift in the LSPR wavelength follows a linear dependence on the refractive index of the surrounding medium. By varying the concentration of streptavidin solution, we demonstrate that the Ag nanostructured films functionalized with thiol and biotin molecules can sensitively detect a binding event between biotin and streptavidin molecules.


2019 ◽  
Vol 7 (16) ◽  
pp. 4610-4621 ◽  
Author(s):  
Honghong Rao ◽  
Xin Xue ◽  
Hongqiang Wang ◽  
Zhonghua Xue

Gold nanorod (AuNR) colorimetric sensors have emerged as powerful tools in various chemosensing and biosensing applications due to their localized surface plasmon resonance (LSPR) extinction in the visible range.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jae-Sung Lee ◽  
Sae-Wan Kim ◽  
Eun-Yoon Jang ◽  
Byoung-Ho Kang ◽  
Sang-Won Lee ◽  
...  

We propose a nanobiosensor to evaluate a lung cancer-specific biomarker. The nanobiosensor is based on an anodic aluminum oxide (AAO) chip and functions on the principles of localized surface plasmon resonance (LSPR) and interferometry. The pore-depth of the fabricated nanoporous AAO chip was 1 µm and was obtained using a two-step electrochemical anodization process. The sensor chip is sensitive to the refractive index (RI) changes of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized on the gold-deposited surface of the AAO chip. In order to confirm the effectiveness of the sensor, the antibodies were immobilized on the surface of the AAO chip, and the lung cancer-specific biomarker was applied atop of the immobilized-antibody layer using the self-assembled monolayer method. The nanoporous AAO chip was used as a sensor system to detect serum amyloid A1, which is a lung cancer-specific biomarker. The specific reaction of the antigen-antibody contributes to the change in the RI. This in turn causes a shift in the resonance spectrum in the refractive interference pattern. The limit of detection (LOD) was found to be 100 ag/mL and the biosensor had high sensitivity over a wide concentration range.


Sign in / Sign up

Export Citation Format

Share Document