Determination of the best shading pattern to maximize the power of TCT connected solar PV array during partial shading condition

2019 ◽  
Vol 48 (4) ◽  
pp. 499-504
Author(s):  
Papul Changmai ◽  
Sanjeev Kumar Metya
Keyword(s):  
Solar Pv ◽  
2021 ◽  
pp. 1-33
Author(s):  
Shahroz Anjum ◽  
Vivekananda Mukherjee ◽  
Gitanjali Mehta

Abstract Individual performance of photovoltaic (PV) modules is contravened by mismatch losses which results in blockage in most of the solar power generated by the PV array (PVA). Partial shading conditions (PSCs) are the main causes of these losses. Several techniques have been discussed to reduce the issues caused by PSCs. Reconfiguration techniques have been proven to be one of the most successful methods that help towards this cause. In this method, the location of PV module (PVM) in the PVA is reconfigured so that the shading effects get distributed throughout the entire array and, hence, maximizing the power output. Two novel reconfiguration patterns such as canonical SuDoKu (CS) and multi diagonal SuDoKu (MDS) for total cross tied (TCT) configuration have been put forth in this manuscript. This approach aims to rearrange the PVMs in the TCT array as per the fed in patterns without causing a change in the internal electrical connections. Further parts of the manuscript focus on the comparison of the proposed pattern's performance with other pre-existing PVA arrangements such as, TCT, SuDoKu, optimal SuDoKu (OS) and modified SuDoku (MS) by taking into account the effects of global maximum power (GMP) point, mismatch power loss, fill factor and performance ratio. The results obtained from the detailed analysis presented in this paper gives proper evidence that, in many cases, the GMP is amplified in the CS and, in all cases, GMP is amplified in the proposed MDS PVA under different shading conditions.


2014 ◽  
Vol 612 ◽  
pp. 71-76 ◽  
Author(s):  
Smita Pareek ◽  
Ratna Dahiya

The power generated by solar photovoltaic system depends on insolation, temperature and shading situation etc. These days’ solar PV arrays are mainly building integrated. Therefore PV array are often under partial shadow. The feature of these shadows can be either easy-to-predict (like neighbour’s chimney, nearby tree or neighbouring buildings) or difficult-to-predict (passing clouds, birds litter).Thus output power obtained by PV arrays decreases in a considerable manner. In this paper, output powers, currents and voltages for SP & TCT topologies are calculated for different patterns of easy-to-predict partial shading conditions on a 4×4 PV field.


Author(s):  
Santosh Kumar Singh ◽  
Anurag Singh Yadav ◽  
Ashutosh Srivastava ◽  
Amarjeet Singh

In this paper, a detailed study is carried out on the solar photovoltaic (PV) array topologies under various shading patterns. The aim of this study is to investigate the mismatch effect losses in PV modules for non uniform irradiations. The shading causes not only power losses, but also non-linearity of P-V characteristics. Under partial shaded conditions, the P-V and I-V characteristics exhibit extreme non-linearity along with multiple load maxima. In this paper, the investigations of the optimal layout of PV modules in a PV array are worked out to provide maximum output power under various shaded conditions. Three type of solar PV array topologies e.g. Series-parallel (SP), Total cross tied (TCT) and Bridge link (BL) are considered for various typesof shaded patterns. The modeling of solar PV array for various types of topologies is done in MATLAB/Simulink environment. The extensive results have been taken on these topologies for partial shading patterns and analyzed, which proves the TCT topology performance is better as compared to other topologies for most of the shading patterns.


IJOSTHE ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 5
Author(s):  
Neha Singh ◽  
Prof. Govind Prasad Pandiya

Solar energy is one of the most used and readily available renewable energy sources among the other energy sources. The power generated by PV systems is dependent on solar irradiance and temperature parameters. In the literature, many researchers and studies are interested in estimating true maximum efficiency point for the PV systems. Due to that fact, MPPT applications and techniques become an important issue for PV systems under both uniform and non uniform conditions. Although, PV system under uniform environment has only one maxima point on P-V curve which is simple to estimate correctly by conventional MPPT techniques, it is not as simple as under non-uniform condition such as partial shading and mismatch effects. To overcome the drawbacks of the conventional MPPTs under non uniform condition, researchers has been investigated new soft computing MPPTs, PV array configurations, system architectures and topologies.


Solar Energy ◽  
2020 ◽  
Vol 196 ◽  
pp. 228-242 ◽  
Author(s):  
D. Prince Winston ◽  
S. Kumaravel ◽  
B. Praveen Kumar ◽  
S. Devakirubakaran

Author(s):  
Santosh Kumar Singh ◽  
Anurag Singh Yadav ◽  
Ashutosh Srivastava ◽  
Amarjeet Singh

In this paper, a detailed study is carried out on the solar photovoltaic (PV) array topologies under various shading patterns. The aim of this study is to investigate the mismatch effect losses in PV modules for non uniform irradiations. The shading causes not only power losses, but also non-linearity of P-V characteristics. Under partial shaded conditions, the P-V and I-V characteristics exhibit extreme non-linearity along with multiple load maxima. In this paper, the investigations of the optimal layout of PV modules in a PV array are worked out to provide maximum output power under various shaded conditions. Three type of solar PV array topologies e.g. Series-parallel (SP), Total cross tied (TCT) and Bridge link (BL) are considered for various types of shaded patterns. The modeling of solar PV array for various types oopologies is done in MATLAB/Simulink environment. The extensive results have been taken on these topologies for partial shading patterns and analyzed, which proves the TCT topology performance is better as compared to other topologies for most of the shading patterns.


In this paper, modeling and performance analysis of conventional configurations are Series-Parallel (SP), BridgeLinked (BL), Honey-Comb (HC), Total-Cross-Tied(TCT) and proposed hybrid configurations are SP-TCT, BL-TCT, HC-TCT, BL-HC and modified BL(MBL), modified HC(MHC), proposed optimal interconnection type configurations of a 5x5 size solar PV array under ten different partial shading cases it causes shading losses and compare the best configuration with respect to array power, number of interconnections or ties required between shaded modules in the array. The proposed optimal interconnection method reduces the number of ties required between modules and these ties are based on the position of number of shaded modules in the entire solar PV array. For the performance analysis of above 11 configurations, total ten shading cases are considered and compare the result with one un-shaded case-U of an irradiance 1000 W/m2 . The PV module parameters of Vikram Solar ELDORA 270 are used for modeling of above 11 conventional and proposed PV array configurations and simulate the models in MATLAB/ Simulink software.


2021 ◽  
pp. 1-36
Author(s):  
Shahroz Anjum ◽  
Vivekananda Mukherjee ◽  
Gitanjali Mehta

Abstract This manuscript focuses on the rearrangement of the structure of the photovoltaic (PV) array under different shading conditions. It aims to analyze the mismatch power losses (MPLs) due to irregular illumination over PV array (PVA). The impact of partial irradiance not only affects the electrical power but also causes multiple peaks in the P-V and I-V curves. The formulation of the best PVA configuration (PVAC) to achieve maximum output even under partial shading conditions is the deciding factor for the topologies considered. To aid the maximum power extraction, a new SuDoKu PVAC is designed like hyper SuDoKu (HS). This new structure is compared with the already existing PVACs such as bridge link, honey comb, series parallel, total cross-tied, and SuDoKu in the effect of considerable cases of shadowing. MATLAB/SIMULINK is used for the designing and computer based modeling of all these PVACs is considered in this work. The evaluation of these arrangements has been done by keeping several performance factors as the deciding pivot points. These factors include MPL, efficiency, global maximum power point (GMPP), and fill factor (FF). The results obtained through this document suggest that the HS arrangement proposed here gives the best outcome for each shading condition. The proposed HS structural arrangement of PVA deals with significantly superior GMPP, FF and efficiency while maintaining minimum MPL in comparison to the other arrangements.


Sign in / Sign up

Export Citation Format

Share Document