scholarly journals Interpretation of MPPT Techniques in Grid Connected Solar PV Array System

IJOSTHE ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 5
Author(s):  
Neha Singh ◽  
Prof. Govind Prasad Pandiya

Solar energy is one of the most used and readily available renewable energy sources among the other energy sources. The power generated by PV systems is dependent on solar irradiance and temperature parameters. In the literature, many researchers and studies are interested in estimating true maximum efficiency point for the PV systems. Due to that fact, MPPT applications and techniques become an important issue for PV systems under both uniform and non uniform conditions. Although, PV system under uniform environment has only one maxima point on P-V curve which is simple to estimate correctly by conventional MPPT techniques, it is not as simple as under non-uniform condition such as partial shading and mismatch effects. To overcome the drawbacks of the conventional MPPTs under non uniform condition, researchers has been investigated new soft computing MPPTs, PV array configurations, system architectures and topologies.

Author(s):  
Surendra Singh Dua, Dr. Ruchi Sharma

Renewable energy sources are becoming more common in the energy generation field these days. Renewable energy sources such as photovoltaic (PV) systems, wind power (WP), and biomass are gaining popularity due to their ease of use, low cost, and low environmental impact. The environmental issues, declining fuel supplies, and increasing energy demands have drawn our attention to the glimmer of hope for a future focused entirely on sustainable and non-polluting energy sources. Photovoltaic (PV) power generation is becoming more common in comparison to other renewable energy sources due to advantages such as ease of access, low cost, low environmental emissions, and lower maintenance costs. In this dissertation, three separate Maximum power point monitoring techniques are used to construct a solar PV system (MPPT). Modeling and simulation using the MATLAB Simulink programmeare being used to check the effectiveness of the proposed scheme. The model is investigated using two partial shading patterns. By providing different values of input radiations to all four modules connected in sequence, we were able to create partial shading conditions using the PV array block. The panel's output is fed to the optimization technique block, which then feeds the boost converter from their duty cycle output. Under partial shading, the results show that the Particle Swarm Optimization algorithm outperforms the Perturb and Observe and Incremental Conductance algorithms..


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1121
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

A reconfiguration technique using a switched-capacitor (SC)-based voltage equalizer differential power processing (DPP) concept is proposed in this paper for photovoltaic (PV) systems at a cell/subpanel/panel-level. The proposed active diffusion charge redistribution (ADCR) architecture increases the energy yield during mismatch and adds a voltage boosting capability to the PV system under no mismatch by connected the available PV cells/panels in series. The technique performs a reconfiguration by measuring the PV cell/panel voltages and their irradiances. The power balancing is achieved by charge redistribution through SC under mismatch conditions, e.g., partial shading. Moreover, PV cells/panels remain in series under no mismatch. Overall, this paper analyzes, simulates, and evaluates the effectiveness of the proposed DPP architecture through a simulation-based model prepared in PSIM. Additionally, the effectiveness is also demonstrated by comparing it with existing conventional DPP and traditional bypass diode architecture.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3863
Author(s):  
Tiago Alves ◽  
João Paulo N. Torres ◽  
Ricardo A. Marques Lameirinhas ◽  
Carlos A. F. Fernandes

The effect of partial shading in photovoltaic (PV) panels is one of the biggest problems regarding power losses in PV systems. When the irradiance pattern throughout a PV panel is inequal, some cells with the possibility of higher power production will produce less and start to deteriorate. The objective of this research work is to present, test and discuss different techniques to help mitigate partial shading in PV panels, observing and commenting the advantages and disadvantages for different PV technologies under different operating conditions. The motivation is to contribute with research, simulation, and experimental work. Several state-of-the-artsolutions to the problem will be presented: different topologies in the interconnection of the panels; different PV system architectures, and also introducing new solution hypotheses, such as different cell interconnections topologies. Alongside, benefits and limitations will be discussed. To obtain actual results, the simulation work was conducted by creating MATLAB/Simulink models for each different technique tested, all centered around the 1M5P PV cell model. The several techniques tested will also take into account different patterns and sizes of partial shading, different PV panel technologies, different values of source irradiation, and different PV array sizes. The results will be discussed and validated by experimental tests.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Atul Kumar1 ◽  
Srivastava Manish2

Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.           Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.


This paper presents a thorough audit on various techniques of Photovoltaic (PV) framework under Partial Shading Conditions (PSC) which improves the yield voltage and power. Various productions report on PV with respect to control upgrades and its execution. In any case, perplexity emerges while choosing an approach that performs under every climatic circumstance. In this way, a fundamental audit of PSC systems is considered, which depends on most extreme power point following (MPPT) at Standard Test Conditions (STC). These MPPT strategies can follow the Global Peak (GP) at PSC. Broad research has been investigated in this field and numerous systems have been accounted for. In this paper, a point by point portrayal and order on various procedures of PV at PSC have been made as far as control factors, structure and hardware utilized in down to earth and business applications. Incomplete Shading is a significant test in photovoltaic (PV) frameworks which influences the quality and amount of the output power. The ordinary change of condition and the diminished profitability of PV Array is a significant obstruction in the brisk advancement of the sunlight based power age. A Solar PV system involves PV cluster connected with an Inverter through a dc-dc converter and the yield of the Inverter is associated with the heap. In any case, expansion to PV modules, and exhibit design, control electronic converters are in like manner fundamental parts for a sun oriented based power generation. It is basic to fathom the effect of fractional concealing to make compelling and strong Photovoltaic vitality transformation structure. PV exhibit course of action, converter arrangement and MPPT control strategy are the three basic districts where the vitality extraction from PV bunch can be improved under incomplete concealed condition. A point by point assessment study is coordinated among central and Micro-Inverter based PV systems and particular MPPT control techniques were pondered and considered under fractional concealed condition using MATLAB/Simulink.


Author(s):  
K Latha Shenoy ◽  
C. Gurudas Nayak ◽  
Rajashekar P. Mandi

As conventional fossil fuel reserves shrink and the danger of climate change prevailing, the need for alternative energy sources is unparalleled. A smart approach to compensate the dependence on electricity generated by burning fossil fuels is through the power generation using grid connected PV system. Partial shading on PV array affects the quantity of the output power in photovoltaic (PV) systems. To extract maximum power from PV under variable irradiance, variable temperature and partial shading condition, various MPPT algorithms are used. Incremental conductance and fuzzy based MPPT techniques are used for maximum power extraction from PV array. Basically 11 kW Solar PV system comprising of PV array coupled with an Inverter through a dc-dc converter is considered for the analysis and output of the inverter is supplied to the load through the LCL filter. An Intelligent controller for maximum power point tracking of PV power is designed. Also, a fuzzy controller for VSC is developed to improve the system performance. The above proposed design has been simulated in the MATLAB/Simulink and analyzed the system performance under various operating conditions. Finally, the performance is evaluated with IEEE 1547 standard for showing the effectiveness of the system.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
B. Pakkiraiah ◽  
G. Durga Sukumar

Nowadays in order to meet the increase in power demands and to reduce the global warming, renewable energy sources based system is used. Out of the various renewable energy sources, solar energy is the main alternative. But, compared to other sources, the solar panel system converts only 30–40% of solar irradiation into electrical energy. In order to get maximum output from a PV panel system, an extensive research has been underway for long time so as to access the performance of PV system and to investigate the various issues related to the use of solar PV system effectively. This paper therefore presents different types of PV panel systems, maximum power point tracking control algorithms, power electronic converters usage with control aspects, various controllers, filters to reduce harmonic content, and usage of battery system for PV system. Attempts have been made to highlight the current and future issues involved in the development of PV system with improved performance. A list of 185 research publications on this is appended for reference.


2020 ◽  
Vol 10 (2) ◽  
pp. 700 ◽  
Author(s):  
Christos Kalogerakis ◽  
Eftichis Koutroulis ◽  
Michail G. Lagoudakis

A global maximum power point tracking (GMPPT) process must be applied for detecting the position of the GMPP operating point in the minimum possible search time in order to maximize the energy production of a photovoltaic (PV) system when its PV array operates under partial shading conditions. This paper presents a novel GMPPT method which is based on the application of a machine-learning algorithm. Compared to the existing GMPPT techniques, the proposed method has the advantage that it does not require knowledge of the operational characteristics of the PV modules comprising the PV system, or the PV array structure. Additionally, due to its inherent learning capability, it is capable of detecting the GMPP in significantly fewer search steps and, therefore, it is suitable for employment in PV applications, where the shading pattern may change quickly (e.g., wearable PV systems, building-integrated PV systems etc.). The numerical results presented in the paper demonstrate that the time required for detecting the global MPP, when unknown partial shading patterns are applied, is reduced by 80.5%–98.3% by executing the proposed Q-learning-based GMPPT algorithm, compared to the convergence time required by a GMPPT process based on the particle swarm optimization (PSO) algorithm.


Author(s):  
Raghu Thumu ◽  
K. Harinadha Reddy

<p>Now-a-days Renewable Energy Sources became an alternative to meet the increasing load demand because they are environmental friendly and also available abundant in nature. Among the Renewable Energy Sources, the Photo Voltaic (PV) System is gaining more attention due abundant availability of solar energy. The Maximum Power Point Tracking Technique is used to extract maximum power from the Photo Voltaic (PV) Array. When there is a need to transfer bulk amount of power from PV Array to Power Grid, the power quality issues, especially the real and reactive power flow problems, are a major concern. In this paper a novel control technique was proposed to control the power flow and to deal with power quality issues that arise when PV Array is integrated with power grid. It consists of a Fuzzy-GA based Cascaded Controller fed Flexible AC Transmission System device, namely Unified Power Flow Controller, for effective control of real and reactive power flow in grid connected photovoltaic system. The output of the Fuzzy Logic Controller is a control vector which is fine tuned by using Genetic Algorithm approach.</p>


2021 ◽  
Vol 24 (1) ◽  
pp. 96
Author(s):  
H. I. Issa ◽  
H. J. Mohammed ◽  
L. M. Abdali ◽  
A. G. Al Bairmani ◽  
M. Ghachim

In this research, the study theory of system includes the use of an important source of renewable energy sources (solar source) and linking this system with an electrical load. The world is witnessing a significant rise in fossil fuel prices since the ending of the 20th century and now, this rise in price increases with the decrease in inventory day after day. Therefore, it turned that the field of attention to researchers of power generation to expand in non-conventional energy sources (new and renewable energy sources).New and renewable energy is inexhaustible in use because they rely on renewable natural resources. The mathematical model is an important part of the detailed study for PV systems. As well as study models for photovoltaic systems via the MATLAB/Simulink, this programming environment contains many models for renewable systems intended to perform simulation and analysis.Solar cells system needs to apply the MPPT algorithm due to the instability of external circumstances such as solar radiation and temperature.At a constant temperature of 25 °C, as the radiation level increases, the current and voltage of the module increase, this leads to an increase in output power. At a constant radiation level of 100 W/m2, as the module temperature increases, the current increases and the voltage decreases, this causes the output power to decrease. The maximum power is reached at 17 V and 3.5 A by the MPPT method. The Perturb and Observe algorithm is used to achieve maximum power.


Sign in / Sign up

Export Citation Format

Share Document