scholarly journals Power Enhancement from Solar PV Array Topologies under Partial Shading Condition

Author(s):  
Santosh Kumar Singh ◽  
Anurag Singh Yadav ◽  
Ashutosh Srivastava ◽  
Amarjeet Singh

In this paper, a detailed study is carried out on the solar photovoltaic (PV) array topologies under various shading patterns. The aim of this study is to investigate the mismatch effect losses in PV modules for non uniform irradiations. The shading causes not only power losses, but also non-linearity of P-V characteristics. Under partial shaded conditions, the P-V and I-V characteristics exhibit extreme non-linearity along with multiple load maxima. In this paper, the investigations of the optimal layout of PV modules in a PV array are worked out to provide maximum output power under various shaded conditions. Three type of solar PV array topologies e.g. Series-parallel (SP), Total cross tied (TCT) and Bridge link (BL) are considered for various typesof shaded patterns. The modeling of solar PV array for various types of topologies is done in MATLAB/Simulink environment. The extensive results have been taken on these topologies for partial shading patterns and analyzed, which proves the TCT topology performance is better as compared to other topologies for most of the shading patterns.

Author(s):  
Santosh Kumar Singh ◽  
Anurag Singh Yadav ◽  
Ashutosh Srivastava ◽  
Amarjeet Singh

In this paper, a detailed study is carried out on the solar photovoltaic (PV) array topologies under various shading patterns. The aim of this study is to investigate the mismatch effect losses in PV modules for non uniform irradiations. The shading causes not only power losses, but also non-linearity of P-V characteristics. Under partial shaded conditions, the P-V and I-V characteristics exhibit extreme non-linearity along with multiple load maxima. In this paper, the investigations of the optimal layout of PV modules in a PV array are worked out to provide maximum output power under various shaded conditions. Three type of solar PV array topologies e.g. Series-parallel (SP), Total cross tied (TCT) and Bridge link (BL) are considered for various types of shaded patterns. The modeling of solar PV array for various types oopologies is done in MATLAB/Simulink environment. The extensive results have been taken on these topologies for partial shading patterns and analyzed, which proves the TCT topology performance is better as compared to other topologies for most of the shading patterns.


2020 ◽  
Vol 9 (1) ◽  
pp. 7-22 ◽  
Author(s):  
Manoharan Premkumar ◽  
Chandrasekaran Kumar ◽  
Ravichandran Sowmya

This paper discusses a modified V-I relationship for the solar photovoltaic (PV) single diode based equivalent model. The model is derived from an equivalent circuit of the PV cell. A PV cell is used to convert the solar incident light to electrical energy. The PV module is derived from the group of series connected PV cells and PV array, or PV string is formed by connecting the group of series and parallel connected PV panels. The model proposed in this paper is applicable for both series and parallel connected PV string/array systems. Initially, the V-I characteristics are derived for a single PV cell, and finally, it is extended to the PV panel and, to string/array. The solar PV cell model is derived based on five parameters model which requires the data’s from the manufacturer’s data sheet. The derived PV model is precisely forecasting the P-V characteristics, V-I characteristics, open circuit voltage, short circuit current and maximum power point (MPP) for the various temperature and solar irradiation conditions. The model in this paper forecasts the required data for both polycrystalline silicon and monocrystalline silicon panels. This PV model is suitable for the PV system of any capacity. The proposed model is simulated using Matlab/Simulink for various PV array configurations, and finally, the derived model is examined in partial shading condition under the various environmental conditions to find the optimal configuration. The PV model proposed in this paper can achieve 99.5% accuracy in producing maximum output power as similar to manufacturers datasheet.©2020. CBIORE-IJRED. All rights reserved


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Chayut Tubniyom ◽  
Rongrit Chatthaworn ◽  
Amnart Suksri ◽  
Tanakorn Wongwuttanasatian

Configurations of photovoltaic (PV) modules, such as series-parallel (SP), bridge-linked (BL), and total cross-tied (TCT) configurations, always utilize a number of connecting switches. In a simulation, the ideal switch with no loss is used to optimize the reconfiguration method for a solar PV array. However, in practice, the switches are non-ideal, causing losses and resulting in a decrease in the total output power of the PV array. In this work, MATLAB/Simulink (R2016a) was employed to simulate nine PV modules linked in a 3 × 3 array, and they were reconfigured using series-parallel (SP), bridge-linked (BL), and total cross-tied (TCT) configurations for both ideal and non-ideal switch cases. It was not surprising that non-ideal switches deteriorated the output power compared with ideal cases. Then, the minimization of losses (ML) configuration was proposed by minimizing the number of switches to give the highest output power. A 5% higher power output was set as the criterion to reconfigure the PV modules when partial shading occurred. The results showed that if 50% or more of the area was partially shaded, reconfiguration was unnecessary. On the other hand, when the shaded area was less than 50%, reconfiguration gave a significant increase in power. Finally, the ML method had different configurations for various shading patterns, and provided better results than those of the TCT method.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2802 ◽  
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Mashood Nasir ◽  
Dezso Sera

Partial shading on photovoltaic (PV) arrays reduces the overall output power and causes multiple maximas on the output power characteristics. Due to the introduction of multiple maximas, mismatch power losses become apparent among multiple PV modules. These mismatch power losses are not only a function of shading characteristics, but also depend on the placement and interconnection patterns of the shaded modules within the array. This research work is aimed to assess the performance of 4 × 4 PV array under different shading conditions. The desired objective is to attain the maximum output power from PV modules at different possible shading patterns by using power electronic-based differential power processing (DPP) techniques. Various PV array interconnection configurations, including the series-parallel (SP), total-cross-tied (TCT), bridge-linked (BL), and center-cross-tied (CCT) are considered under the designed shading patterns. A comparative performance analysis is carried out by analyzing the output power from the DPP-based architecture and the traditional Schottky diode-based architecture. Simulation results show the gain in the output power by using the DPP-based architecture in comparison to the traditional bypassing diode method.


2014 ◽  
Vol 612 ◽  
pp. 71-76 ◽  
Author(s):  
Smita Pareek ◽  
Ratna Dahiya

The power generated by solar photovoltaic system depends on insolation, temperature and shading situation etc. These days’ solar PV arrays are mainly building integrated. Therefore PV array are often under partial shadow. The feature of these shadows can be either easy-to-predict (like neighbour’s chimney, nearby tree or neighbouring buildings) or difficult-to-predict (passing clouds, birds litter).Thus output power obtained by PV arrays decreases in a considerable manner. In this paper, output powers, currents and voltages for SP & TCT topologies are calculated for different patterns of easy-to-predict partial shading conditions on a 4×4 PV field.


2021 ◽  
Vol 13 (24) ◽  
pp. 13627
Author(s):  
Astitva Kumar ◽  
Mohammad Rizwan ◽  
Uma Nangia ◽  
Muhannad Alaraj

The extraction of maximum power is a big challenge in solar photovoltaic-based power plants due to varying atmospheric and meteorological parameters. The concept of array reconfiguration is applied for the maximum power extraction in solar PV plants. Using this approach, the occurrence of multiple peaks in P-V and I-V characteristics during partial shade can be smoothened and reduced significantly. Partial shading due to the movement of the cloud is considered in the research. The cloud movement mainly because of velocity and wind direction is used for creating various shading conditions. The main focus is to reduce the power losses during partial shading using a nature-inspired optimization approach to reconfigure the array for different types of shading conditions. A grey wolf optimizer-based bridge-linked total cross-tied (GWO-BLTCT) configuration is proposed in this paper. The performance of the proposed topology is compared with standard and hybrid topologies, namely, series-parallel, total cross-tied, BLTCT, and SuDoKu-BLTCT, based on performance indicators such as fill factor, performance ratio, power enhancement, and power loss. The proposed GWO-BLTCT outperforms the remaining topologies due to the least power loss and high fill factor. It also has the highest average power enhancement and performance ratio with 23.75% and 70.02% respectively.


Author(s):  
Mustapha Alaoui ◽  
Hattab Maker ◽  
Azeddine Mouhsen ◽  
Hicham Hihi

For the purpose of minimizing greenhouse gas emissions and contributing strongly to the climate change mitigation, many researchers and scientists are making tremendous efforts in order to boost the research and development in renewable energies as an important solution to reduce the use of conventional power generation resources. Solar photovoltaic (PV) energy is widely used and has known a significant interest in last years. However, its dependence on the atmospheric conditions does not allow researchers to perform their experiences at the desired atmospheric parameters especially temperature (T) and irradiance (G). Furthermore, using real PV modules with controllable light source to carry out measurements and tests on PV applications such as Maximum Power Point Tracking (MPPT) and solar connected inverters is considerably inefficient and less flexible. Therefore, PV array emulator were appeared to deal with those limitations and to replace efficiently the use of real PV modules in laboratory tests by delivering similar PV characteristics and mimicking the electrical behavior of PV panels. In addition to the emulation of PV modules under varying environmental conditions, the emulation of PV array under partial shading conditions is an interesting topic especially for the aim of using PV array emulators in testing Global Maximum Power Point Tracking (GMPPT) techniques, which constitute nowadays a huge challenge for PV researchers. This paper presents the design of PV array emulator based on robust sliding mode controller, which is able to emulate accurately the PV array under both uniform solar insolation and partial shading conditions. Simulation results using Matlab Simulink software are presented and discussed so as to investigate the static and dynamic performances of the developed power device.


2021 ◽  
pp. 1-36
Author(s):  
Shahroz Anjum ◽  
Vivekananda Mukherjee ◽  
Gitanjali Mehta

Abstract This manuscript focuses on the rearrangement of the structure of the photovoltaic (PV) array under different shading conditions. It aims to analyze the mismatch power losses (MPLs) due to irregular illumination over PV array (PVA). The impact of partial irradiance not only affects the electrical power but also causes multiple peaks in the P-V and I-V curves. The formulation of the best PVA configuration (PVAC) to achieve maximum output even under partial shading conditions is the deciding factor for the topologies considered. To aid the maximum power extraction, a new SuDoKu PVAC is designed like hyper SuDoKu (HS). This new structure is compared with the already existing PVACs such as bridge link, honey comb, series parallel, total cross-tied, and SuDoKu in the effect of considerable cases of shadowing. MATLAB/SIMULINK is used for the designing and computer based modeling of all these PVACs is considered in this work. The evaluation of these arrangements has been done by keeping several performance factors as the deciding pivot points. These factors include MPL, efficiency, global maximum power point (GMPP), and fill factor (FF). The results obtained through this document suggest that the HS arrangement proposed here gives the best outcome for each shading condition. The proposed HS structural arrangement of PVA deals with significantly superior GMPP, FF and efficiency while maintaining minimum MPL in comparison to the other arrangements.


2021 ◽  
Vol 7 (1) ◽  
pp. 1-23
Author(s):  
V Bala Raju ◽  
Ch Chengaiah

Partial shading has a negative impact on the performance parameters of a Solar Photovoltaic (PV) array, because it shades certain panels while leaving others un-shaded. This article focuses on modeling, comparing and performance assessment of 6×6, 6×5 and 5×6 size shadowed solar PV arrays under different partial shading cases in the MATLAB/ Simulink software. For this purpose, the simulation of series-parallel (SP), Total-Cross-Tied (TCT) and proposed shade dispersion based TCT (SD-TCT) type of array configurations was carried out under few shading cases. The proposed SD-TCT was designed using the shades dispersion technique, which is based on a number logic approach. In this technique, in order to effectively remove the row-current mismatches in the TCT PV array configuration, the shaded and un-shaded modules in an array were re-arranged, so that the shading on modules expands across the whole array. The physical placement of the TCT array modules has been reordered in accordance with the proposed number logic pattern exclusive of altering the electrical links among the panels. The simulation results showed that the performance of the SD-TCT type was superior to that of conventional array configurations.


Author(s):  
Oliver StC. Headley ◽  
William Hinds

Abstract Since incident solar radiation and cooling demand are in phase for most of the day at Caribbean sites, and between 4 and 7 kWh/m2 of solar energy is available virtually every day, solar cooling makes sense. A solar ice maker with a capacity of 50 lbs (22.7 kg) of ice per day was operated at CERMES, UWI, Barbados, for six months using 1.1kWp of BP Solar photovoltaic (PV) panels. This was a pilot study for a full scale, one-tonne-per-day solar ice maker at the fishing village of Skeete’s Bay on the southeast coast of Barbados at a new fishing complex. The Skeete’s Bay solar PV ice maker system uses 148 BP Solar 275F solar PV modules with a maximum output of 4.75A and 17.0V. These are wired in series-parallel to form an array with a nominal output of 11,100W (48V at 231A). This power is directed into a battery bank of twenty four12V, 200Ah (100hour rate) lead acid batteries. Two Trace SW4048 inverters power two Scotsman model 1200AE-32A flake ice machines, each producing 1170 lbs (531kg) per day and feeding into a common storage bin of 4.1m3.


Sign in / Sign up

Export Citation Format

Share Document