Sliding wear behaviour of Fe/316L/430—Ti(C,N) composites prepared via spark plasma sintering and subsequent heat treatment

Author(s):  
Dao-ying Chen ◽  
Ying Liu ◽  
Ren-quan Wang ◽  
Jin-wen Ye
Wear ◽  
2019 ◽  
Vol 432-433 ◽  
pp. 202944 ◽  
Author(s):  
Mingwen Bai ◽  
Righdan Namus ◽  
Yidong Xu ◽  
Dikai Guan ◽  
Mark W. Rainforth ◽  
...  

2011 ◽  
Vol 278 ◽  
pp. 533-538 ◽  
Author(s):  
Stefan Drawin ◽  
J.P. Monchoux ◽  
J.L. Raviart ◽  
Alain Couret

An NbTiHfCrAlSi niobium silicide based atomized powder has been compacted by a conventional technique (hot extrusion) and by spark plasma sintering to nearly fully dense alloys. Both materials exhibit a metastable fine micrometer-sized microstructure that has been coarsened by a subsequent heat treatment. The densification of the SPS sample takes place between ca. 800°C and 1300°C.


2021 ◽  
Vol 15 (3) ◽  
pp. 211-218
Author(s):  
Guobing Ying ◽  
Cong Hu ◽  
Lu Liu ◽  
Cheng Sun ◽  
Dong Wen ◽  
...  

High-purity and bulk Ta4AlC3 ceramics were successfully fabricated by spark plasma sintering (SPS) and subsequent heat treatment, using the raw materials including TaC and Ta2AlC powders. These raw materials were first synthesized by self-propagation high temperature synthesis from elements tantalum, aluminium and carbon black powders, followed by pressure-less sintering. The as-fabricated bulk Ta4AlC3 was relatively stable when subjected to heat treatment at elevated temperature of 1500?C. Moreover, prolonging the heat treatment time resulted in bigger grain sizes and higher densities of the Ta4AlC3. The flexural strength and the fracture toughness of the Ta4AlC3 fabricated by SPS were found to be 411MPa and 7.11MPa?m1/2, respectively. After the heat treatment at 1500?C for 8 h, the flexural strength and the fracture toughness of the Ta4AlC3 could reach 709MPa and 9.23MPa?m1/2, respectively. The special structural characteristics of the ternary ceramics and the increase of density after the heat treatment are the main reasons for the variation in mechanical properties of ternary ceramics.


Vacuum ◽  
2017 ◽  
Vol 145 ◽  
pp. 320-333 ◽  
Author(s):  
H.M. Mallikarjuna ◽  
C.S. Ramesh ◽  
P.G. Koppad ◽  
R. Keshavamurthy ◽  
D. Sethuram

2007 ◽  
Vol 534-536 ◽  
pp. 217-220 ◽  
Author(s):  
Sung Yeal Bae ◽  
In Sup Ahn ◽  
Ho Jung Cho ◽  
Chul Jin Kim ◽  
Dong Kyu Park

TiC particulate reinforced Fe matrix composite compacts with controlled interfacial reaction was processed by spark plasma sintering after mechanical alloying. Milled powders were fabricated for 1-5 hours by spex shaker mill with the ball to powder ratio of 25:2. Metal matrix composites (MMCs) based on the Fe-40%TiC system can be synthesized by spark plasma sintering of the D’AE powders with TiH2-graphite powders under vacuum in the temperature range 1273-1473K for 5-20 min. TiC phase was formed by self combustion reaction with temperature increase. The specimen that was formed by sintering Fe-TiC powders displayed a microstructure of uniformly dispersed TiC grain in a continuous metal matrix. The densifications of the TiC-Fe materials were increased as the heat-treatment holding time increasing. In the same time, relative density and hardness of TiC-Fe sintering materials was increased.


2015 ◽  
Vol 41 (10) ◽  
pp. 15278-15282 ◽  
Author(s):  
Davide Bertagnoli ◽  
Oscar Borrero-López ◽  
Fernando Rodríguez-Rojas ◽  
Fernando Guiberteau ◽  
Angel L. Ortiz

2018 ◽  
Vol 190 ◽  
pp. 14003
Author(s):  
S. Schöler ◽  
D. Yilkiran ◽  
D. Wulff ◽  
F. Özkaya ◽  
K. Möhwald ◽  
...  

For the realization of liquid lubricant free forming processes different approaches are conceivable. The priority program 1676 “Dry forming - Sustainable production through dry machining in metal forming” addresses this issue in the context of metal forming processes. The present study reports results from one subproject of the priority program that employs selective oxidization of tool steel surfaces for the implementation of a dry sheet metal deep drawing process. Within the present study, specimen surfaces of the tool steel (1.2379) were heat-treated to optimize their tribological properties with respect to sliding wear behaviour in contact with drawn sheet metal (DP600+Z). The heat treatment was designed to result in the formation of selective oxide layers that can act as friction reducing separation layers. The heating setup employed an inductive heating under protective gas atmosphere. Selective oxidation was realized by controlling the residual oxygen content. Specifically, the specimens were heated in the near-surface region just above the annealing temperature, thus avoiding the degradation of mechanical properties in the bulk. Evaluation of hardness along cross-sections of each specimen revealed suitable initial temperatures for the inductive heat treatment. Oxide layer systems were analyzed regarding their tribological sliding wear behaviour after selective oxidation, as well as their morphology and chemical composition before and after the sliding wear tests.


Sign in / Sign up

Export Citation Format

Share Document