scholarly journals Study of the spectral and power characteristics of In0.2Ga0.8N/GaN superluminescent light-emitting diodes by taking into account the piezoelectric polarization fields

Author(s):  
Hassan Absalan ◽  
Mir Maqsood Golzan ◽  
Nasser Moslehi Milani
2021 ◽  
Author(s):  
Hassan Absalan ◽  
Mir Maqsood Golzan ◽  
Nasser Moslehi Milani

Abstract In this study, the effects of the piezoelectric polarization field have been investigated on the spectral and power characteristics of In0.2Ga0.8N/GaN superluminescent light emitting diodes. The Schrödinger and Poisson equations, the rate equations in the multiple quantum well active region and separate confinement heterostructure layers, and the optical propagating equations have been solved in the presence of the piezoelectric field. The results have been compared with results of the case of without piezoelectric field. According to the results, in the presence of piezoelectric field, the red-shift occurs in the spectra, and the width of spectrum increases. Also, the piezoelectric field decreases the peak intensity of spectrum and modal gain of the device.


2000 ◽  
Vol 660 ◽  
Author(s):  
Thomas M. Brown ◽  
Ian S. Millard ◽  
David J. Lacey ◽  
Jeremy H. Burroughes ◽  
Richard H. Friend ◽  
...  

ABSTRACTThe semiconducting-polymer/injecting-electrode heterojunction plays a crucial part in the operation of organic solid state devices. In polymer light-emitting diodes (LEDs), a common fundamental structure employed is Indium-Tin-Oxide/Polymer/Al. However, in order to fabricate efficient devices, alterations to this basic structure have to be carried out. The insertion of thin layers, between the electrodes and the emitting polymer, has been shown to greatly enhance LED performance, although the physical mechanisms underlying this effect remain unclear. Here, we use electro-absorption measurements of the built-in potential to monitor shifts in the barrier height at the electrode/polymer interface. We demonstrate that the main advantage brought about by inter-layers, such as poly(ethylenedioxythiophene)/poly(styrene sulphonic acid) (PEDOT:PSS) at the anode and Ca, LiF and CsF at the cathode, is a marked reduction of the barrier to carrier injection. The electro- absorption results also correlate with the electroluminescent characteristics of the LEDs.


2003 ◽  
Vol 764 ◽  
Author(s):  
X. A. Cao ◽  
S. F. LeBoeuf ◽  
J. L. Garrett ◽  
A. Ebong ◽  
L. B. Rowland ◽  
...  

Absract:Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.


Sign in / Sign up

Export Citation Format

Share Document