scholarly journals Utilisation of Electrodialytically Treated Sewage Sludge Ash in Mortar

2018 ◽  
Vol 9 (12) ◽  
pp. 2503-2515 ◽  
Author(s):  
Annemette Kappel ◽  
Raimon Parés Viader ◽  
Krzysztof Piotr Kowalski ◽  
Gunvor M. Kirkelund ◽  
Lisbeth M. Ottosen
2008 ◽  
Vol 57 (5) ◽  
pp. 707-714 ◽  
Author(s):  
C. Niewersch ◽  
C. N. Koh ◽  
T. Wintgens ◽  
T. Melin ◽  
C. Schaum ◽  
...  

Due to the depletion of mineral phosphorus resources there is an increasing demand for efficient phosphorus recovery technologies. In this study the potential of nanofiltration to recover phosphorus from pre-treated sewage sludge is investigated. The efficiency of three commercial nanofiltration membranes (Desal 5DK, NP030; MPF34) was tested using model solutions. Desal 5DK showed the best selectivity for phosphorus. A pH of lower than 1.5 was found to be most suitable. Desal 5DK was used on four different sewage sludge ash eluates and on one sewage sludge. In these experiments it was shown that a separation of phosphorus from undesired components such as heavy metals was possible with significant variations in the efficiency for the different ash and sludge types. Additionally the achievable product recovery was investigated with model solutions. A product recovery of 57.1% was attained for pH 1 and 41.4% for pH 1.5.


2014 ◽  
Vol 60 (No. 12) ◽  
pp. 555-561 ◽  
Author(s):  
M. Severin ◽  
J. Breuer ◽  
M. Rex ◽  
J. Stemann ◽  
Adam Ch ◽  
...  

This study focuses on the question whether heat treated sewage sludge ashes are more favourable as fertilizers than untreated sewage sludge ashes (USSA) and whether their fertilization effects are comparable with commercial triple superphosphate (TSP). In a pot experiment, maize was fertilized either with one of three heat treated and Na-, Ca- and Si-compounds amended sewage sludge ashes (two glown phosphates, steel mill slag + sewage sludge ash) or USSA or TSP as control. Fertilization with USSA did not increase the biomass yield and the P uptake of maize in comparison to the P0 treatment (7.25 resp. 8.35 g dry matter/pot). Fertilization with heat treated sewage sludge ashes and TSP resulted in significantly higher yields and plant P uptakes which are on average eight times higher than treatment with USSA and P0 control. Biomass yields and P uptake of maize after fertilization with heat treated sewage sludge ashes are not significantly different from those after TSP fertilization. The main P compound in USSA is Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>. By heat treatment and amendment with different sodium, calcium, sulphur and silicon containing additives or steel mill converter slag, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> is converted to Ca- and Na-silico-phosphates, which have a higher water solubility than Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>. This increased solubility is responsible for the high plant availability of this phosphates.


2021 ◽  
pp. 127759
Author(s):  
Yifan Zhou ◽  
Jianxin Lu ◽  
Jiangshan Li ◽  
Chris Cheeseman ◽  
Chi Sun Poon

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3863
Author(s):  
Deng-Fong Lin ◽  
Wei-Jhu Wang ◽  
Chia-Wen Chen ◽  
Kuo-Liang Lin

Municipal incinerator bottom ash (MIBA) and sewage sludge ash (SSA) are secondary wastes produced from municipal incinerators. Landfills, disposal at sea, and agricultural use have been the major outlets for these secondary wastes. As global emphasis on sustainability arises, many have called for an increasing reuse of waste materials as valuable resources. In this study, MIBA and SSA were mixed with clay for ceramic tile manufacturing in this study. Raw materials firstly went through TCLP (Toxicity Characteristic Leaching Procedure) to ensure their feasibility for reuse. From scanning electron microscopy (SEM), clay’s smooth surface was contrasted with the porous surface of MIBA and SSA, which led to a higher water requirement for the mixing. Specimens with five MIBA mix percentages of 0%, 5%, 10%, 15%, and 20% (wt) and three SSA mix percentages of 0%, 10%, and 20% (wt) were made to compare how the two waste materials affected the quality of the final product and to what extent. Shrinkage tests showed that MIBA and SSA contributed oppositely to tile shrinkage, as more MIBA reduced tile shrinkage, while more SSA encouraged tile shrinkage. However, as the kiln temperature reached 1150 °C, the SiO2-rich SSA adversely reduced the shrinkage due to the glass phase that formed to expand the tile instead. Both MIBA and SSA increased water tile absorption and reduced its bending strength and wear resistance. Increasing the kiln temperature could effectively improve the water absorption, bending strength, and wear resistance of high MIBA and SSA mixes, as SEM showed a more compact structure at higher temperatures. However, when the temperature reached 1100 °C, more pores appeared and seemingly exhausted the benefit brought by the higher temperature. Complex interactions between kiln temperature and MIBA/SSA mix percentage bring unpredictable performance of tile shrinkage, bending strength, and water absorption, which makes it very challenging to create a sample meeting all the specification requirements. We conclude that a mix with up to 20% of SSA and 5% of MIBA could result in quality tiles meeting the requirements for interior or exterior flooring applications when the kiln temperature is carefully controlled.


2013 ◽  
Vol 67 (9) ◽  
pp. 1101-1105 ◽  
Author(s):  
Christian Vogel ◽  
Christian Adam ◽  
Don McNaughton

Sign in / Sign up

Export Citation Format

Share Document