Formulation of New Biostimulant of Plant and Soil Correction Based on Humic Acids Extracted by Magnetized Water from Compost from the Waste of Coffee Marc and Cattle Manure

Author(s):  
Redouane Mghaiouini ◽  
Nisrine Benzibiria ◽  
Mohamed Monkade ◽  
Abdeslam El Bouari
RSC Advances ◽  
2017 ◽  
Vol 7 (43) ◽  
pp. 26903-26911 ◽  
Author(s):  
Min Wu ◽  
Gongxia Li ◽  
Xiaolin Jiang ◽  
Qianqian Xiao ◽  
Mingxing Niu ◽  
...  

Previous studies on reduction of Cr(vi) by humic acids (HAs) have seldom used the extracts from composted animal manure.


1989 ◽  
Vol 69 (1) ◽  
pp. 39-47 ◽  
Author(s):  
A. NDAYEGAMIYE ◽  
D. CÔTÉ

Chemical and biological properties were evaluated in 1987 on an acidic silty loam soil following a long-term field study established in 1978 and cultivated with silage corn. Treatments included a control, solid cattle manure (20, 40 and 60 Mg ha−1 FYM) and pig slurry (60, 120 m3 ha−1 SLU) applied every 2 yr and annually, respectively. No fertilizer was applied. The results of this study have shown that neither treatment significantly affected soil pH values, total-N contents and C:N ratios compared to the control. The cation exchange capacity (CEC) of the soil was significantly higher with FYM treatment than with control or SLU application. The highest rates of FYM and SLU have also increased (P < 0.05) soil organic carbon, microbial activity and potentially mineralizable nitrogen. The soil microflora populations (bacteria, fungi, actinomycetes, ammonifiers and nitrifiers) were greatly improved by both treatments. There were no significant differences in organic matter content or the relative amount of humic and fulvic acids between FYM and SLU plots. In spite of these results, FYM application (40 and 60 Mg ha−1) did affect more significantly the distribution of organic carbon in HA and the E4/E6 quotients than SLU additions. Humic acids extracted from SLU amended soils had a lower C content and lower E4/E6 ratios than humic acids from FYM soils. Long-term SLU application did not contribute to decreased organic matter content, CEC and humic acids yield, probably because of optimal organic residues returned to the soil by the corn crops. The FYM application generally improved soil chemical and biological properties. For a sustainable soil productivity, long-term SLU application should then be avoided in rotation in which small amounts of plant residues are returned, especially on soils with low organic matter contents. Key words: Organic matter, microbial activity, nitrogen mineralization potential, CEC, solid cattle manure, pig slurry


2003 ◽  
Vol 60 (3) ◽  
pp. 549-557 ◽  
Author(s):  
Renato Yagi ◽  
Manoel Evaristo Ferreira ◽  
Mara Cristina Pessôa da Cruz ◽  
José Carlos Barbosa

This work evaluates effects of cattle manure vermicompost in association with liming on soil fertility indexes. The experiment was carried out in greenhouse conditions, in pots containing samples of a Typic Hapludox, medium-textured soil. Five levels of vermicompost (equivalent to 0, 28, 42, 56, and 70 t ha-1, dry weight) and five liming levels (to raise base saturation to 20, 30, 40, 50, and 60%) were combined in a factorial scheme and samples were incubated for 180 days. Samples of the same soil received the equivalent to 70 t ha-1 of the cattle manure used to produce the vermicompost, and the same lime rates. Cattle manure was better than vermicompost to supply K and Mg. Small differences in P supply were observed between the manures. The vermicompost increased the levels of Ca, pH, organic matter (OM) and CEC more than the manure. C-humic acids decreased and C-humin increased with vermicompost application. With liming, C-humic acids decreased, but the total content of OM was not affected.


2015 ◽  
Vol 51 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Kenya Nagasawa ◽  
Binhui Wang ◽  
Kazuki Nishiya ◽  
Kensuke Ushijima ◽  
Qianqian Zhu ◽  
...  

Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 789-800 ◽  
Author(s):  
Monika Langmeier ◽  
Emmanuel Frossard ◽  
Michael Kreuzer ◽  
Paul Mäder ◽  
David Dubois ◽  
...  

2020 ◽  
pp. 15-27

In order to study the effect of phosphogypsum and humic acids in the kinetic release of salt from salt-affected soil, a laboratory experiment was conducted in which columns made from solid polyethylene were 60.0 cm high and 7.1 cm in diameter. The columns were filled with soil so that the depth of the soil was 30 cm inside the column, the experiment included two factors, the first factor was phosphogypsum and was added at levels 0, 5, 10 and 15 tons ha-1 and the second-factor humic acids were added at levels 0, 50, 100 and 150 kg ha-1 by mixing them with the first 5 cm of column soil and one repeater per treatment. The continuous leaching method was used by using an electrolytic well water 2.72 dS m-1. Collect the leachate daily and continue the leaching process until the arrival of the electrical conductivity of the filtration of leaching up to 3-5 dS m-1. The electrical conductivity and the concentration of positive dissolved ions (Ca, Mg, Na) were estimated in leachate and the sodium adsorption ratio (SAR) was calculated. The results showed that the best equation for describing release kinetics of the salts and sodium adsorption ratio in soil over time is the diffusion equation. Increasing the level of addition of phosphogypsum and humic acids increased the constant release velocity (K) of salts and the sodium adsorption ratio. The interaction between phosphogypsum and humic acids was also affected by the constant release velocity of salts and the sodium adsorption ratio. The constant release velocity (K) of the salts and the sodium adsorption ratio at any level of addition of phosphogypsum increased with the addition of humic acids. The highest salts release rate was 216.57 in PG3HA3, while the lowest rate was 149.48 in PG0HA0. The highest release rate of sodium adsorption ratio was 206.09 in PG3HA3, while the lowest rate was 117.23 in PG0HA0.


2011 ◽  
Vol 47 (1) ◽  
pp. 97-104
Author(s):  
V. A. Medved' ◽  
P. D. Klochenko ◽  
O. V. Vasilenko ◽  
T. A. Vasilchuk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document