Gauging human visual interest using multiscale entropy analysis of EEG signals

Author(s):  
M. Fraiwan ◽  
M. Alafeef ◽  
F. Almomani
2009 ◽  
Vol 21 (03) ◽  
pp. 169-176 ◽  
Author(s):  
Gaoxiang Ouyang ◽  
Chuangyin Dang ◽  
Xiaoli Li

In this study, we investigate multiscale entropy (MSE) as a tool to evaluate the dynamic characteristics of electroencephalogram (EEG) during seizure-free, pre-seizure and seizure state, respectively, in epileptic rats. The results show that MSE method is able to reveal that EEG signals are more complex in seizure-free state than in seizure state, and can successfully distinguish among different seizure states. The classification ability of the MSE measures is tested using the linear discriminant analysis (LDA). Test results confirm that the classification accuracy of MSE method is superior to traditional single-scale entropy method. MSE method has potential in classifying the epileptic EEG signals.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 264
Author(s):  
Ben-Yi Liau ◽  
Fu-Lien Wu ◽  
Keying Zhang ◽  
Chi-Wen Lung ◽  
Chunmei Cao ◽  
...  

Walking performance is usually assessed by linear analysis of walking outcome measures. However, human movements consist of both linear and nonlinear complexity components. The purpose of this study was to use bidimensional multiscale entropy analysis of ultrasound images to evaluate the effects of various walking intensities on plantar soft tissues. Twelve participants were recruited to perform six walking protocols, consisting of three speeds (slow at 1.8 mph, moderate at 3.6 mph, and fast at 5.4 mph) for two durations (10 and 20 min). A B-mode ultrasound was used to assess plantar soft tissues before and after six walking protocols. Bidimensional multiscale entropy (MSE2D) and the Complexity Index (CI) were used to quantify the changes in irregularity of the ultrasound images of the plantar soft tissues. The results showed that the CI of ultrasound images after 20 min walking increased when compared to before walking (CI4: 0.39 vs. 0.35; CI5: 0.48 vs. 0.43, p < 0.05). When comparing 20 and 10 min walking protocols at 3.6 mph, the CI was higher after 20 min walking than after 10 min walking (CI4: 0.39 vs. 0.36, p < 0.05; and CI5: 0.48 vs. 0.44, p < 0.05). This is the first study to use bidimensional multiscale entropy analysis of ultrasound images to assess plantar soft tissues after various walking intensities.


Entropy ◽  
2015 ◽  
Vol 18 (1) ◽  
pp. 3 ◽  
Author(s):  
Junshan Pan ◽  
Hanping Hu ◽  
Xiang Liu ◽  
Yong Hu

Entropy ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 31 ◽  
Author(s):  
Hamed Azami ◽  
Daniel Abásolo ◽  
Samantha Simons ◽  
Javier Escudero

Sign in / Sign up

Export Citation Format

Share Document