A survey on predictions of cyber-attacks utilizing real-time twitter tracing recognition

Author(s):  
Sahar Altalhi ◽  
Adnan Gutub
Keyword(s):  
Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


2017 ◽  
Vol 70 ◽  
pp. 422-435 ◽  
Author(s):  
Ángel Manuel Guerrero-Higueras ◽  
Noemí DeCastro-García ◽  
Francisco Javier Rodríguez-Lera ◽  
Vicente Matellán

2020 ◽  
Vol 10 (21) ◽  
pp. 7833
Author(s):  
Elvin Eziama ◽  
Faroq Awin ◽  
Sabbir Ahmed ◽  
Luz Marina Santos-Jaimes ◽  
Akinyemi Pelumi ◽  
...  

Connected and automated vehicles (CAVs) as a part of Intelligent Transportation Systems (ITS) are projected to revolutionise the transportation industry, primarily by allowing real-time and seamless information exchange of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). However, these connectivity and automation are expected to offer vast numbers of benefits, new challenges in terms of safety, security and privacy also emerge. CAVs continue to rely heavily on their sensor readings, the input obtained from other vehicles and the road side units to inspect roadways. Consequently, anomalous reading of sensors triggered by malicious cyber attacks may lead to fatal consequences. Hence, like all other safety-critical applications, in CAVs also, reliable and secure information dissemination is of utmost importance. As a result, real time detection of anomaly along with identifying the source is a pre-requisite for mass deployment of CAVs. Motivated by this safety concerns in CAVs, we develop an efficient anomaly detection method through the combination of Bayesian deep learning (BDL) with discrete wavelet transform (DWT) to improve the safety and security in CAVs. In particular, DWT is used to smooth sensor reading of a CAV and then feed the data to a BDL module for analysis of the detection and identification of anomalous sensor behavior/data points caused by either malicious cyber attacks or faulty vehicle sensors. Our numerical experiments show that the proposed method demonstrates significant improvement in detection anomalies in terms of accuracy, sensitivity, precision, and F1-score evaluation metrics. For these metrics, the proposed method shows an average performance gain of 7.95%, 9%, 8.77% and 7.33%, respectively when compared with Convolutional Neural Network (CNN-1D), and when compared with BDL, the corresponding numbers are 5%, 7.9%, 7.54% and 4.1% respectively.


Author(s):  
Francsico Reyes ◽  
Walter Fuertes ◽  
Freddy Tapia ◽  
Theofilos Toulkeridis ◽  
Hernán Aules ◽  
...  
Keyword(s):  

2018 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Mounir Hafsa ◽  
Farah Jemili

Cybersecurity ventures expect that cyber-attack damage costs will rise to $11.5 billion in 2019 and that a business will fall victim to a cyber-attack every 14 seconds. Notice here that the time frame for such an event is seconds. With petabytes of data generated each day, this is a challenging task for traditional intrusion detection systems (IDSs). Protecting sensitive information is a major concern for both businesses and governments. Therefore, the need for a real-time, large-scale and effective IDS is a must. In this work, we present a cloud-based, fault tolerant, scalable and distributed IDS that uses Apache Spark Structured Streaming and its Machine Learning library (MLlib) to detect intrusions in real-time. To demonstrate the efficacy and effectivity of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities. A decision tree algorithm is used to predict the nature of incoming data. For this task, the use of the MAWILab dataset as a data source will give better insights about the system capabilities against cyber-attacks. The experimental results showed a 99.95% accuracy and more than 55,175 events per second were processed by the proposed system on a small cluster.


2018 ◽  
Vol 99 ◽  
pp. 75-83 ◽  
Author(s):  
Ángel Manuel Guerrero-Higueras ◽  
Noemí DeCastro-García ◽  
Vicente Matellán

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Taehoon Eom ◽  
Jin B. Hong ◽  
SeongMo An ◽  
Jong Sou Park ◽  
Dong Seong Kim

Software defined networking (SDN) has been adopted in many application domains as it provides functionalities to dynamically control the network flow more robust and more economical compared to the traditional networks. In order to strengthen the security of the SDN against cyber attacks, many security solutions have been proposed. However, those solutions need to be compared in order to optimize the security of the SDN. To assess and evaluate the security of the SDN systematically, one can use graphical security models (e.g., attack graphs and attack trees). However, it is difficult to provide defense against an attack in real time due to their high computational complexity. In this paper, we propose a real-time intrusion response in SDN using precomputation to estimate the likelihood of future attack paths from an ongoing attack. We also take into account various SDN components to conduct a security assessment, which were not available when addressing only the components of an existing network. Our experimental analysis shows that we are able to estimate possible attack paths of an ongoing attack to mitigate it in real time, as well as showing the security metrics that depend on the flow table, including the SDN component. Hence, the proposed approach can be used to provide effective real-time mitigation solutions for securing SDN.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
DongHo Kang ◽  
ByoungKoo Kim ◽  
JungChan Na ◽  
KyoungSon Jhang

Internet of Things (IoT) consists of several tiny devices connected together to form a collaborative computing environment. Recently IoT technologies begin to merge with supervisory control and data acquisition (SCADA) sensor networks to more efficiently gather and analyze real-time data from sensors in industrial environments. But SCADA sensor networks are becoming more and more vulnerable to cyber-attacks due to increased connectivity. To safely adopt IoT technologies in the SCADA environments, it is important to improve the security of SCADA sensor networks. In this paper we propose a multiple filtering technique based on whitelists to detect illegitimate packets. Our proposed system detects the traffic of network and application protocol attacks with a set of whitelists collected from normal traffic.


Sign in / Sign up

Export Citation Format

Share Document