scholarly journals Human emotion modeling (HEM): an interface for IoT systems

Author(s):  
Mohammed R. Elkobaisi ◽  
Fadi Al Machot

AbstractThe use of IoT-based Emotion Recognition (ER) systems is in increasing demand in many domains such as active and assisted living (AAL), health care and industry. Combining the emotion and the context in a unified system could enhance the human support scope, but it is currently a challenging task due to the lack of a common interface that is capable to provide such a combination. In this sense, we aim at providing a novel approach based on a modeling language that can be used even by care-givers or non-experts to model human emotion w.r.t. context for human support services. The proposed modeling approach is based on Domain-Specific Modeling Language (DSML) which helps to integrate different IoT data sources in AAL environment. Consequently, it provides a conceptual support level related to the current emotional states of the observed subject. For the evaluation, we show the evaluation of the well-validated System Usability Score (SUS) to prove that the proposed modeling language achieves high performance in terms of usability and learn-ability metrics. Furthermore, we evaluate the performance at runtime of the model instantiation by measuring the execution time using well-known IoT services.

2016 ◽  
Vol 58 (1) ◽  
Author(s):  
Judith Michael

AbstractCognitive impairments are a rising challenge in society. Everybody has experienced events of forgetting what one was going to do when entering a certain room, or where one has put the keys, the purse or the smartphone. Such problems mostly occur under stress or fatigue. And they may increase with age up to diseases like senile dementia or Alzheimer which affect mental tasks like memory or reasoning, and thus often lead to the need of comprehensive assistance. Due to the societal change, the number of people suffering from such impairments is continuously growing. Cognitive modeling may provide human-centered solutions for this challenge since a cognitive model of a person's behavior, regarding activities of daily living, can serve as a knowledge base for support actions. This paper presents a Domain Specific Modeling Language for Ambient Assistance: The Human Cognitive Modeling Language (HCM-L). It was developed to preserve the episodic memory of a person in the form of conceptual behavior models including relevant context. The work is part of the Human Behavior Monitoring and Support (HBMS) project, a research project in the field of Ambient Assisted Living funded by the Klaus Tschira Stiftung gGmbH. HBMS aims at monitoring a person's behavior using activity recognition techniques, generating models from their output, and providing focused and timely support by the use of intelligent reasoning mechanisms.


Author(s):  
Thomas F Fässler ◽  
Stefan Strangmüller ◽  
Henrik Eickkhoff ◽  
Wilhelm Klein ◽  
Gabriele Raudaschl-Sieber ◽  
...  

The increasing demand for a high-performance and low-cost battery technology promotes the search for Li+-conducting materials. Recently, phosphidotetrelates and aluminates were introduced as an innovative class of phosphide-based Li+-conducting materials...


2021 ◽  
Vol 11 (12) ◽  
pp. 5476
Author(s):  
Ana Pajić Simović ◽  
Slađan Babarogić ◽  
Ognjen Pantelić ◽  
Stefan Krstović

Enterprise resource planning (ERP) systems are often seen as viable sources of data for process mining analysis. To perform most of the existing process mining techniques, it is necessary to obtain a valid event log that is fully compliant with the eXtensible Event Stream (XES) standard. In ERP systems, such event logs are not available as the concept of business activity is missing. Extracting event data from an ERP database is not a trivial task and requires in-depth knowledge of the business processes and underlying data structure. Therefore, domain experts require proper techniques and tools for extracting event data from ERP databases. In this paper, we present the full specification of a domain-specific modeling language for facilitating the extraction of appropriate event data from transactional databases by domain experts. The modeling language has been developed to support complex ambiguous cases when using ERP systems. We demonstrate its applicability using a case study with real data and show that the language includes constructs that enable a domain expert to easily model data of interest in the log extraction step. The language provides sufficient information to extract and transform data from transactional ERP databases to the XES format.


Author(s):  
Denys Rozumnyi ◽  
Jan Kotera ◽  
Filip Šroubek ◽  
Jiří Matas

AbstractObjects moving at high speed along complex trajectories often appear in videos, especially videos of sports. Such objects travel a considerable distance during exposure time of a single frame, and therefore, their position in the frame is not well defined. They appear as semi-transparent streaks due to the motion blur and cannot be reliably tracked by general trackers. We propose a novel approach called Tracking by Deblatting based on the observation that motion blur is directly related to the intra-frame trajectory of an object. Blur is estimated by solving two intertwined inverse problems, blind deblurring and image matting, which we call deblatting. By postprocessing, non-causal Tracking by Deblatting estimates continuous, complete, and accurate object trajectories for the whole sequence. Tracked objects are precisely localized with higher temporal resolution than by conventional trackers. Energy minimization by dynamic programming is used to detect abrupt changes of motion, called bounces. High-order polynomials are then fitted to smooth trajectory segments between bounces. The output is a continuous trajectory function that assigns location for every real-valued time stamp from zero to the number of frames. The proposed algorithm was evaluated on a newly created dataset of videos from a high-speed camera using a novel Trajectory-IoU metric that generalizes the traditional Intersection over Union and measures the accuracy of the intra-frame trajectory. The proposed method outperforms the baselines both in recall and trajectory accuracy. Additionally, we show that from the trajectory function precise physical calculations are possible, such as radius, gravity, and sub-frame object velocity. Velocity estimation is compared to the high-speed camera measurements and radars. Results show high performance of the proposed method in terms of Trajectory-IoU, recall, and velocity estimation.


1996 ◽  
Vol 8 (9) ◽  
pp. 1178-1180 ◽  
Author(s):  
F. Dorgeuille ◽  
B. Mersali ◽  
M. Feuillade ◽  
S. Sainson ◽  
S. Slempkes ◽  
...  

2017 ◽  
Vol 5 (5) ◽  
pp. 2328-2338 ◽  
Author(s):  
Dewei Rao ◽  
Lingyan Zhang ◽  
Zhaoshun Meng ◽  
Xirui Zhang ◽  
Yunhui Wang ◽  
...  

Since the turn of the new century, the increasing demand for high-performance energy storage systems has generated considerable interest in rechargeable ion batteries.


2021 ◽  
Author(s):  
Feiqiang Guo ◽  
Yinbo Zhan ◽  
Xiaopeng Jia ◽  
Huiming Zhou ◽  
Shuang Liang ◽  
...  

Using Sargassum as the precursor, a novel approach was developed to synthesize three-dimensional porous carbons as high-performance electrode materials for supercapacitors via KOH activation and subsequent nitrogen-doping employing melamine as...


Sign in / Sign up

Export Citation Format

Share Document