Estimation of depth to fresh–salt water interface and its implications for sustainable groundwater resource management: a case study of the Coastal strip of Dar es Salaam, Tanzania

2014 ◽  
Vol 73 (10) ◽  
pp. 6639-6662 ◽  
Author(s):  
Yohana Mtoni ◽  
Ibrahimu Chikira Mjemah ◽  
Kristine Martens ◽  
Charles Bakundukize ◽  
Paul Enock Mtoni ◽  
...  
2003 ◽  
Vol 19 (4) ◽  
pp. 579-592 ◽  
Author(s):  
Thomas S. Lowry ◽  
John C. Bright ◽  
Murray E. Close ◽  
Christina A. Robb ◽  
Paul A. White ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 671
Author(s):  
Xiaoying Zhou ◽  
Feier Wang ◽  
Kuan Huang ◽  
Huichun Zhang ◽  
Jie Yu ◽  
...  

Predicting and allocating water resources have become important tasks in water resource management. System dynamics and optimal planning models are widely applied to solve individual problems, but are seldom combined in studies. In this work, we developed a framework involving a system dynamics-multiple objective optimization (SD-MOO) model, which integrated the functions of simulation, policy control, and water allocation, and applied it to a case study of water management in Jiaxing, China to demonstrate the modeling. The predicted results of the case study showed that water shortage would not occur at a high-inflow level during 2018–2035 but would appear at mid- and low-inflow levels in 2025 and 2022, respectively. After we made dynamic adjustments to water use efficiency, economic growth, population growth, and water resource utilization, the predicted water shortage rates decreased by approximately 69–70% at the mid- and low-inflow levels in 2025 and 2035 compared to the scenarios without any adjustment strategies. Water allocation schemes obtained from the “prediction + dynamic regulation + optimization” framework were competitive in terms of social, economic and environmental benefits and flexibly satisfied the water demands. The case study demonstrated that the SD-MOO model framework could be an effective tool in achieving sustainable water resource management.


2021 ◽  
Vol 11 (8) ◽  
pp. 378
Author(s):  
Jaco Griffioen ◽  
Monique van der Drift ◽  
Hans van den Broek

This paper sets out to enhance current Maritime Crew Resource Management (MCRM) training, and with that to improve the training of technical and non-technical skills given to bachelor maritime officers. The rationale for CRM training is improving safety performance by reducing accidents caused by human error. The central notion of CRM training is that applying good resource management principles during day-to-day operations will lead to a beneficial change in attitudes and behaviour regarding safety. This article therefore indicates that enhanced MCRM should play a more structural role in the training of student officers. However, the key question is: what are the required changes in attitude and behaviour that will create sufficient adaptability to improve safety performance? To provide an answer, we introduce the Resilience Engineering (RE) theory. From an RE point of view, we elaborate on the relation between team adaptability and safety performance, operationalized as a competence profile. In addition, a case study of the ‘Rotterdam Approach’ will be presented, in which the MCRM training design has been enhanced with RE, with the objective to train team adaptability skills for improved safety performance.


Sign in / Sign up

Export Citation Format

Share Document