Investigating the effect of sample disturbance, compaction and stabilization on the collapse index of soils

2016 ◽  
Vol 75 (18) ◽  
Author(s):  
R. Noorzad ◽  
H. Pakniat
2019 ◽  
Vol 92 ◽  
pp. 01004
Author(s):  
Christopher Ibeh ◽  
Matteo Pedrotti ◽  
Alessandro Tarantino ◽  
Rebecca Lunn

The quality and reliability of cohesive soil laboratory test data can be significantlyaffected by sample disturbance during sampling or sample preparation. Sample disturbance may affect key design and modelling parameters such as stiffness, preconsolidation stress, compressibility and undrained shear strength, and ultimately determine particle mobilization and shear plane development. The use of X-ray computed tomography (X-CT) in the study of soil is restricted by the inverse relationship of specimen size and obtainable image resolution. This has led to the testing of miniature specimen sizes which are far less than conventional laboratory sample size in a bid to obtain high resolution images and detailed particle-scale soil properties; however, these miniature soil specimens are more prone to sample disturbance. In this work 2% muscovite was mixed with speswhite kaolin clay as a strain marker for use in X-CT. The clay soil sample was prepared from slurry and either consolidated using an oedometer or a gypsum mould. Specimens obtained from a 7 mm tube sampler were compared to lathe trimmed specimens with a diameter (Ø) of 7 mm. Results from X-CT imaging were used to study the influence of sampler type on specimen disturbance, by analysing the muscovite particle orientation of the obtained 3D images. The results show that; for samples subjected to large consolidation stress (>200kpa) lathe trimmed specimens may be subject to lesser disturbance compared to tube sampled specimens.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


1985 ◽  
Vol 25 (1) ◽  
pp. 52-64 ◽  
Author(s):  
Akio Nakase ◽  
Osamu Kusakabe ◽  
Hiroshi Nomura

2008 ◽  
Vol 52 (4) ◽  
pp. S128-S129
Author(s):  
P.A. Lee ◽  
J.M. Fields ◽  
K.Y. Jenq ◽  
D.G. Mark ◽  
N.L. Panebianco ◽  
...  

Author(s):  
Dania Elbeggo ◽  
Yannic Ethier ◽  
Jean-Sébastien Dubé ◽  
Mourad Karray

Shear wave velocity is an important mechanical/dynamic parameter allowing the characterization of a soil in the elastic range (γ < 0.001 %). Thirty five existing laboratory correlations of small strains shear modulus or shear wave velocity were examined in this study and are grouped into different general forms based on their geotechnical properties. A database of 11 eastern Canadian clay deposits was selected and used for the critical insights. The effect of the coefficient of earth pressure at rest was also examined. A range of variation for each general form of correlation was determined to take the plasticity index and void ratio values of investigated sites into account. The analysis shows a significant scatter in normalized shear wave velocity values predicted by existing correlations and raises questions on the applicability of these correlations, especially for eastern Canadian clays. New correlations are proposed for Champlain clays based on laboratory measurement of shear wave velocity using the piezoelectric ring actuator technique, P-RAT, incorporated in consolidation cells. An analysis of P-RAT results reveals the sample disturbance effect and suggests an approach to correct the effect of disturbance on laboratory shear wave velocity measurements. The applicability of the proposed correlations, including the disturbance correction, is validated by comparison with in situ measurements using multi-modal analysis of surface waves (MMASW).


1995 ◽  
Vol 32 (5) ◽  
pp. 899-904 ◽  
Author(s):  
Jaroslav Feda

A series of 18 triaxial CIUP (undrained isotropically consolidated with pore pressure measurement) tests of fissured cemented Neogene lacustrine clay from northern Bohemia is analyzed, with special reference to the shear strength. The effects of sample disturbance, swelling, and cementation are shown to be the principal factors affecting the shear envelope. During the prepeak stage of testing, destruction of the cementation of some specimens occurs, which is reflected in the wavy form of the stress–strain diagrams. The linear strength envelopes were found to be arranged according to the amount of disturbance (as expressed in the magnitude of swelling). Cemented and uncemented specimens differ when pore-water pressure and stress–strain diagrams are compared. Key words : Miocene clay, undisturbed samples, triaxial test, structural bonds, cementation, sample disturbance.


1999 ◽  
Vol 36 (2) ◽  
pp. 239-250 ◽  
Author(s):  
E Eberhardt ◽  
D Stead ◽  
B Stimpson

The effects of sampling disturbance on the laboratory-derived mechanical properties of brittle rock were measured on cored samples of Lac du Bonnet granite taken from three different in situ stress domains at the Underground Research Laboratory of Atomic Energy of Canada Limited. A variety of independent measurements and scanning electron microscope observations demonstrate that stress-induced sampling disturbance increased with increasing in situ stresses. The degree of damage was reflected in laboratory measurements of acoustic velocity and elastic stiffness. Examination of the stress-induced microfracturing characteristics during uniaxial compression of the samples revealed that the degree of sampling disturbance had only minor effects on the stress levels at which new cracks were generated (i.e., the crack initiation stress threshold). Crack-coalescence and crack-damage thresholds, on the other hand, significantly decreased with increased sampling disturbance. The presence of numerous stress-relief cracks in the samples retrieved from the highest in situ stress domains was seen to weaken the rock by providing an increased number of planes of weakness for active cracks to propagate along. A 36% strength decrease was seen in samples retrieved from the highest in situ stress domain (sigma1 - sigma3 approximate 40 MPa) as compared with those taken from the lowest in situ stress domain (sigma1 - sigma3 approximate 10 MPa).Key words: sample disturbance, brittle fracture, crack initiation, crack propagation, material properties, rock failure.


Sign in / Sign up

Export Citation Format

Share Document