Research on vibration effect of tunnel blasting based on an improved Hilbert–Huang transform

2021 ◽  
Vol 80 (5) ◽  
Author(s):  
Yan Zhao ◽  
Ren liang Shan ◽  
Hai long Wang
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Baofu Duan ◽  
Weizeng Gong ◽  
Guoshan Ta ◽  
Xuxu Yang ◽  
Xuewei Zhang

The vibration effect generated during tunnel excavation can influence or damage adjacent tunnels. Studying and controlling the blasting vibration effect has important theoretical and practical significance, especially for new tunnels. This paper takes the tunnel project of Gao Jiu Lu-Jia Hua Cross Tunnel in Chongqing as the research background and assesses the blasting vibration influence in the up-down cross-tunnel. Onsite monitoring and numerical simulation were used to analyze peak particle velocity (PPV) changes, stress distribution, and crown settlement during the excavation process of Gao Jiu Lu I Tunnel at Jia Hua Tunnel Left Line in the cross-section. Influence laws of blasting excavation in a small, clear distance cross-tunnel on an existing tunnel below were obtained. Results show that new tunnel blasting vibrations exerted the largest influence on the crown of the existing tunnel below in the cross-section. The maximum tensile stress of the secondary lining of the existing tunnel below was mainly concentrated in the crown area. The maximum compressive stress during excavation was concentrated in the crown foot, and the stress value was less than the tensile and compressive strength of the concrete. The loosening of the surrounding rock from blasting excavation of the new tunnel caused secondary settlement of the existing tunnel crown below. The cumulative settlement value at the cross-section of the two tunnels was the largest. With an increase in axial distance from the cross-section of the existing tunnel crown, the settlement value gradually declined and became stable. These research results have reference value for the construction of a small, clear distance cross-tunnel and provide theoretical guidance for similar tunnel excavation projects in the future.


1996 ◽  
Vol 118 (3) ◽  
pp. 482-488 ◽  
Author(s):  
Sergio Bittanti ◽  
Fabrizio Lorito ◽  
Silvia Strada

In this paper, Linear Quadratic (LQ) optimal control concepts are applied for the active control of vibrations in helicopters. The study is based on an identified dynamic model of the rotor. The vibration effect is captured by suitably augmenting the state vector of the rotor model. Then, Kalman filtering concepts can be used to obtain a real-time estimate of the vibration, which is then fed back to form a suitable compensation signal. This design rationale is derived here starting from a rigorous problem position in an optimal control context. Among other things, this calls for a suitable definition of the performance index, of nonstandard type. The application of these ideas to a test helicopter, by means of computer simulations, shows good performances both in terms of disturbance rejection effectiveness and control effort limitation. The performance of the obtained controller is compared with the one achievable by the so called Higher Harmonic Control (HHC) approach, well known within the helicopter community.


Sign in / Sign up

Export Citation Format

Share Document