Interpreting land subsidence impacts due to groundwater depletion using remote sensing-based GRACE gravity anomaly and DInSAR technique: a study on north-western parts of India

2021 ◽  
Vol 80 (17) ◽  
Author(s):  
Pranshu Pranjal ◽  
Neha Kadiyan ◽  
R. S. Chatterjee ◽  
Dheeraj Kumar ◽  
Madhu Sudan Sati
2021 ◽  
Author(s):  
Guadalupe Bru ◽  
Pablo Ezqerro ◽  
Carolina Guardiola-Albert ◽  
Marta Béjar-Pizarro ◽  
Gerardo Herrera ◽  
...  

<p>Groundwater is a critical resource that provides fresh drinking water to at least 50% of the global population and accounts for 43% of all of the water used for irrigation (Siebert et al., 2010; UNESCO, 2012). A main consequence of groundwater depletion in overexploited aquifers is land subsidence, which ensues other impacts, such as increasing flooding risk (specially in coastal areas), damages to infrastructures and reduction of storage capacity in aquifer systems. Aquifer deformation and groundwater flow models are essential to design sustainable management strategies. In this context, A-DInSAR techniques provide valuable surface displacement data to understand the deformational behaviour of the aquifer and to characterise its properties.</p><p>RESERVOIR project, which is part of the PRIMA programme supported by the European Union, aims to provide new products and services for a sustainable groundwater management model to be developed and tested in four water-stressed Mediterranean pilot sites. Each of them is representative of a different aquifer system flow scheme. They are located in Italy (coastal aquifer of Comacchio), Spain (Alto Guadalentín Basin), Turkey (Gediz River Basin) and Jordan (Azraq Wetland Reserve). The water usages of these aquifers are irrigation, drinking water and/or power generation. Each site is prone to different issues such as land subsidence, salt water intrusion, water pollution, over-exploitation and insufficient recharge.</p><p>One of the primary objectives of the project is the use of advanced satellite-based Earth Observation (EO) techniques for the hydrogeological characterization and their integration into numerical groundwater flow and geomechanical models. This will lead to improve the knowledge about the current capacity to store water and the future response of aquifer systems to natural and human-induced stresses. Free Sentinel-1 SAR acquisitions available at the Copernicus Open Access Hub will be used to perform A-DInSAR processing in representative areas of each pilot site. Additionally, the InSAR processing tools of the Geohazards Exploitation Platform (GEP) funded by the European Space Agency, will be used for a first assessment of ground deformation. In this work we present the preliminary results obtained with Sentinel-1 images using the P-SBAS web tool on GEP (De Luca et al., 2015) at the four pilot sites.</p><p> </p><p><em>De Luca, C., Cuccu, R., Elefante, S., Zinno, I., Manunta, M., Casola, V., Rivolta, G., Lanari, R., and Casu, F., 2015, An on-demand web tool for the unsupervised retrieval of earth’s surface deformation from SAR data: The P-SBAS service within the ESA G-POD environment: Remote Sensing, v. 7, no. 11, p. 15630-15650.</em></p><p><em>Siebert, S., Burke, J., Faures, J.-M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T., 2010, Groundwater use for irrigation—a global inventory: Hydrology and earth system sciences, v. 14, no. 10, p. 1863-1880.</em></p><p><em>UNESCO, 2012, World’s Groundwater Resources Are Suffering from Poor Governance, UNESCO Publishing: Paris, France, UNESCO Publishing.</em></p>


2021 ◽  
Vol 13 (9) ◽  
pp. 1771
Author(s):  
Massimo Fabris ◽  
Nicola Cenni ◽  
Simone Fiaschi

Land subsidence is a geological hazard that affects several different communities around the world [...]


2021 ◽  
Vol 80 (12) ◽  
Author(s):  
Mohammad Roohi ◽  
Mehdi Faeli ◽  
Maryam Irani ◽  
Ehsan Shamsaei

2021 ◽  
Vol 80 (4) ◽  
pp. 3217-3231
Author(s):  
Neha Kadiyan ◽  
R. S. Chatterjee ◽  
Pranshu Pranjal ◽  
Pankaj Agrawal ◽  
S. K. Jain ◽  
...  

2021 ◽  
Author(s):  
Mehdi Darvishi ◽  
Fernando Jaramillo

<p>In the recent years, southern Sweden has experienced drought conditions during the summer with potential risks of groundwater shortages. One of the main physical effects of groundwater depletion is land subsidence, a geohazard that potentially damages urban infrastructure, natural resources and can generate casualties. We here investigate land subsidence induced by groundwater depletion and/or seasonal variations in Gotland, an agricultural island in the Baltic Sea experiencing recent hydrological droughts in the summer. Taking advantage of the multiple monitoring groundwater wells active on the island, we explore the existence of a relationship between groundwater fluctuations and ground deformation, as obtained from Interferometric Synthetic Aperture Radar (InSAR). The aim in the long-term is to develop a high-accuracy map of land subsidence with an appropriate temporal and spatial resolution to understand groundwater changes in the area are recognize hydroclimatic and anthropogenic drivers of change.</p><p>We processed Sentinel-1 (S1) data, covering the time span of 2016-2019, by using the Small BAseline Subset (SBAS) to process 119 S1-A/B data (descending mode). The groundwater level of Nineteen wells distributed over the Gotland island were used to assess the relationship between groundwater depletion and the detected InSAR displacement. In addition to that, the roles of other geological key factors such as soil depth, ground capacity in bed rock, karstification, structure of bedrock and soil type in occurring land subsidence also investigated. The findings showed that the groundwater level in thirteen wells with soil depths of less than 5 meters correlated well with InSAR displacements. The closeness of bedrock to ground surface (small soil depth) was responsible for high coherence values near the wells, and enabled the detection land subsidence. The results demonstrated that InSAR could use as an effective monitoring system for groundwater management and can assist in predicting or estimating low groundwater levels during summer conditions.</p>


2021 ◽  
Author(s):  
Vamshi Karanam ◽  
Shagun Garg ◽  
Mahdi Motagh ◽  
Kamal Jain

<p>Coal fires, land subsidence, roof collapse, and other life-threatening risks are a predictable phenomenon for the mineworkers and the neighbourhood population in coalfields. Jharia Coalfields in India are suffered heavily from land subsidence and coal fires for over a century. In addition to the loss of precious coal reserves, this has led to severe damage to the environment, livelihood, transportation, and precious lives.</p><p>Such incidents highlight the dire need for a well-defined methodology for risk analysis for the coalfield. In this study, we regenerated a Land Use Land Cover map prepared using Indian Remote Sensing satellite imagery and ground survey. Persistent Scatterer Interferometry analysis using Sentinel -1 images was carried out to study the land subsidence phenomenon between Nov 2018 and Apr 2019. For the same study period, coal fire zones were identified with Landsat – 8 thermal band imagery. Integration of coal fire maps, subsidence velocity maps, and land use maps was further implemented in a geographical information background environment to extract the high-risk zones. These high-risk areas include residential areas, railways, and mining sites, requiring immediate attention.</p><p>The results show that the coal mines are affected by subsidence of up to 20 cm/yr and a temperature anomaly of nearly 20<sup>o</sup>C is noticed. A high-risk zone of almost 18 sq. km. was demarcated with Kusunda, Gaslitand, and West Mudidih collieries being the most critically affected zones in the Coal mines. The study demonstrates the potential to combine data from multiple satellite sensors to build a safer ecosystem around the coal mines.  </p>


2020 ◽  
Author(s):  
Mahmud Haghshenas Haghighi ◽  
Mahdi Motagh

<p>Iran is located in a semi-arid to arid environment and is highly dependent on its groundwater resources for development in its agricultural and industrial sectors. In many aquifers across the country, unsustainable groundwater extraction in the past few decades caused severe groundwater level decline, at locations exceeding 20 m. The country is divided into six major basins. However, neither the water consumption nor renewable water resources are distributed evenly. Quantitative assessment of the groundwater situation in different basins is a piece of crucial information for improving management practices. In this study, we use satellite observations to assess the groundwater situation across Iran.</p><p>We observe the terrestrial water storage (TWS) from Satellite gravimetry measurements of Gravity Recovery And Climate Experiment (GRACE). These observations provide a country-scale picture of groundwater variations at a coarse spatial resolution of 500 km. In all six basins, TWS declines during the 15 year lifetime of GRACE from 2002 until 2017. In total, the Equivalent Water Height (EWH) declines as much as approximately 10 cm during this period. Although part of this decline is caused by other components such as surface water or soil moisture, groundwater decline is responsible for the major part.</p><p>The compaction of aquifers resulted from the over-extraction of groundwater can be observed as land subsidence on the surface. We analyze ground subsidence for the whole Iran using Interferometric Synthetic Aperture Radar (InSAR) observations of the Copernicus Sentinel-1 satellite and present the first detailed map of compacting aquifers across the country at a high spatial resolution of 100 m. The average rate of displacement, exceeding 30 cm/yr in some areas, reveals hundreds of aquifers across the country are suffering unsustainable groundwater consumption. The distribution of subsidence basins is significantly correlated with the distribution of agricultural regions.</p><p>To obtain information on the sustainability of groundwater consumption, we separate the time series of land subsidence into two parts: the short term part as elastic/recoverable component and the long-term part as inelastic/irrecoverable. The ratio between elastic and inelastic elements provides quantitative measurements of aquifer health. Combining the Sentinel-1 subsidence measurements with GRACE observations of groundwater variations gives us new details on how the groundwater is consumed across different basins in the country. The results can have essential implications on the more sustainable management of groundwater resources.</p>


Sign in / Sign up

Export Citation Format

Share Document