Towards aquifer deformation models integrating SAR remote sensing: preliminary land subsidence results using GEP tools

Author(s):  
Guadalupe Bru ◽  
Pablo Ezqerro ◽  
Carolina Guardiola-Albert ◽  
Marta Béjar-Pizarro ◽  
Gerardo Herrera ◽  
...  

<p>Groundwater is a critical resource that provides fresh drinking water to at least 50% of the global population and accounts for 43% of all of the water used for irrigation (Siebert et al., 2010; UNESCO, 2012). A main consequence of groundwater depletion in overexploited aquifers is land subsidence, which ensues other impacts, such as increasing flooding risk (specially in coastal areas), damages to infrastructures and reduction of storage capacity in aquifer systems. Aquifer deformation and groundwater flow models are essential to design sustainable management strategies. In this context, A-DInSAR techniques provide valuable surface displacement data to understand the deformational behaviour of the aquifer and to characterise its properties.</p><p>RESERVOIR project, which is part of the PRIMA programme supported by the European Union, aims to provide new products and services for a sustainable groundwater management model to be developed and tested in four water-stressed Mediterranean pilot sites. Each of them is representative of a different aquifer system flow scheme. They are located in Italy (coastal aquifer of Comacchio), Spain (Alto Guadalentín Basin), Turkey (Gediz River Basin) and Jordan (Azraq Wetland Reserve). The water usages of these aquifers are irrigation, drinking water and/or power generation. Each site is prone to different issues such as land subsidence, salt water intrusion, water pollution, over-exploitation and insufficient recharge.</p><p>One of the primary objectives of the project is the use of advanced satellite-based Earth Observation (EO) techniques for the hydrogeological characterization and their integration into numerical groundwater flow and geomechanical models. This will lead to improve the knowledge about the current capacity to store water and the future response of aquifer systems to natural and human-induced stresses. Free Sentinel-1 SAR acquisitions available at the Copernicus Open Access Hub will be used to perform A-DInSAR processing in representative areas of each pilot site. Additionally, the InSAR processing tools of the Geohazards Exploitation Platform (GEP) funded by the European Space Agency, will be used for a first assessment of ground deformation. In this work we present the preliminary results obtained with Sentinel-1 images using the P-SBAS web tool on GEP (De Luca et al., 2015) at the four pilot sites.</p><p> </p><p><em>De Luca, C., Cuccu, R., Elefante, S., Zinno, I., Manunta, M., Casola, V., Rivolta, G., Lanari, R., and Casu, F., 2015, An on-demand web tool for the unsupervised retrieval of earth’s surface deformation from SAR data: The P-SBAS service within the ESA G-POD environment: Remote Sensing, v. 7, no. 11, p. 15630-15650.</em></p><p><em>Siebert, S., Burke, J., Faures, J.-M., Frenken, K., Hoogeveen, J., Döll, P., and Portmann, F. T., 2010, Groundwater use for irrigation—a global inventory: Hydrology and earth system sciences, v. 14, no. 10, p. 1863-1880.</em></p><p><em>UNESCO, 2012, World’s Groundwater Resources Are Suffering from Poor Governance, UNESCO Publishing: Paris, France, UNESCO Publishing.</em></p>

2020 ◽  
Author(s):  
Mahmud Haghshenas Haghighi ◽  
Mahdi Motagh

<p>Iran is located in a semi-arid to arid environment and is highly dependent on its groundwater resources for development in its agricultural and industrial sectors. In many aquifers across the country, unsustainable groundwater extraction in the past few decades caused severe groundwater level decline, at locations exceeding 20 m. The country is divided into six major basins. However, neither the water consumption nor renewable water resources are distributed evenly. Quantitative assessment of the groundwater situation in different basins is a piece of crucial information for improving management practices. In this study, we use satellite observations to assess the groundwater situation across Iran.</p><p>We observe the terrestrial water storage (TWS) from Satellite gravimetry measurements of Gravity Recovery And Climate Experiment (GRACE). These observations provide a country-scale picture of groundwater variations at a coarse spatial resolution of 500 km. In all six basins, TWS declines during the 15 year lifetime of GRACE from 2002 until 2017. In total, the Equivalent Water Height (EWH) declines as much as approximately 10 cm during this period. Although part of this decline is caused by other components such as surface water or soil moisture, groundwater decline is responsible for the major part.</p><p>The compaction of aquifers resulted from the over-extraction of groundwater can be observed as land subsidence on the surface. We analyze ground subsidence for the whole Iran using Interferometric Synthetic Aperture Radar (InSAR) observations of the Copernicus Sentinel-1 satellite and present the first detailed map of compacting aquifers across the country at a high spatial resolution of 100 m. The average rate of displacement, exceeding 30 cm/yr in some areas, reveals hundreds of aquifers across the country are suffering unsustainable groundwater consumption. The distribution of subsidence basins is significantly correlated with the distribution of agricultural regions.</p><p>To obtain information on the sustainability of groundwater consumption, we separate the time series of land subsidence into two parts: the short term part as elastic/recoverable component and the long-term part as inelastic/irrecoverable. The ratio between elastic and inelastic elements provides quantitative measurements of aquifer health. Combining the Sentinel-1 subsidence measurements with GRACE observations of groundwater variations gives us new details on how the groundwater is consumed across different basins in the country. The results can have essential implications on the more sustainable management of groundwater resources.</p>


2020 ◽  
Author(s):  
Shagun Garg ◽  
Mahdi Motagh ◽  
Indu Jayaluxmi

<p>Groundwater induced land subsidence is a growing problem worldwide and has been documented in places like Mexico, Jakarta, Tehran, and China. India is the largest user of groundwater and pumps more than the USA and China combined. The National capital region(NCR) of India, due to rapid urbanization and illegal extraction, is facing severe groundwater depletion of the order of 0.5m-2m per year and is declared as a critical zone by the government of India. The looming crisis of groundwater depletion and supporting hydrogeology makes this region prone to land surface deformation.</p><p>Monitoring subsidence by conventional methods such as extensometers, leveling, hydrogeology modeling, and GPS requires precise field measurements and are time-consuming. With the advent of Interferometry, monitoring deformation precisely from the microwave sensors onboard satellite is possible. In our study, we demonstrate the result of the Persistent Scatterer InSAR (PS-InSAR) technique to monitor the subsidence in the Delhi NCR region using Sentinel -1 Interferometric wide swath (IW) mode. Descending pass datasets are used to identify the PSs over the study area. Fifty-six differential interferograms from Aug 2016 to Sep 2018 are formed after removing flat earth and topographic phase using SRTM 30m DEM. The PS-InSAR processing is done using Stanford Method for Persistent Scatterers (StaMPS), where an amplitude threshold index of 0.4 is selected for Initial PS candidate. The PS points are the stable targets which do not decorrelate much over time.  The deformation is calculated for all these PS points and a time series, and hence a velocity map is formed.</p><p>The rate of deformation in Southwest Delhi is found to be approximately 15 cm/year (max) in the radar line of sight direction. The in-situ data provided by the Central groundwater board (CGWB) India is not consistent and has many gaps. However, after applying Spatio-temporal interpolation, it follows the decreasing trend of Land subsidence which suggests that the groundwater extraction is the major cause for the subsidence in the southwest region of NCR during the observed period i.e., from 2016 -2018.</p>


2021 ◽  
Author(s):  
◽  
Ryan David Evison

<p>This dissertation focuses on the catchment-scale evaluation of groundwater age as a function of space and time in the 270 km² Middle Wairarapa catchment. The simulation of the mean age and point distribution of ages, contributing to a regional age estimate, is a novel demonstration of the recently developed groundwater software, Cornaton (2012). The Wairarapa is in the southern North Island of New Zealand and is a dynamic water catchment exhibiting complex interactions between its rivers and shallow aquifers. Groundwater has been widely utilized since the 1980s for agriculture, horticulture and drinking water; increasing land use development (i.e. irrigation and nutrient application) requires effective regional management of both the quantity and quality of water resources.  Groundwater age provides insights into groundwater flow and transport processes and thus enables better management of groundwater resources. Subsurface water age information enables the interpretation of recharge influence, zones of sensitivity for sustainable abstraction, as well as contamination risk from land-use intensification to drinking water supplies. It is accepted that groundwater is composed of a mixture of water with different ages, however, until very recently mean age has been the primary indicator for groundwater age assessment. Mean age alone can misrepresent the potential for contamination from young water; for example, a groundwater sample with an old mean age may still contain a significant fraction of young water; therefore, a fuller understanding of the age distribution in both time and space is important for groundwater management. The ability to simulate the full distribution of groundwater age within transient numerical groundwater models has only been very recently enabled, through implementation of the time-marching Laplace transform Galerkin technique (TMLTGT), and is demonstrated in this dissertation.  A transient finite-element groundwater flow model originally developed by Greater Wellington Regional Council was converted to simulate transport of the age tracer tritium and groundwater age using the Ground Water (GW) software. Observed tritium concentrations were utilized in the calibration using the Monte Carlo and Gauss-Marquardt-Levenberg methods. Following the calibration of the transport model the GW software was then used to derive pumping well capture zones and directly simulate age throughout the Middle Wairarapa Valley catchment. The advective dispersive equation and the TMLTGT were used for transient mean-age and transient simulations of the full distribution of groundwater age. The results are presented as maps and graphs of both mean age and age distributions throughout the Middle Valley, covering a 15 year simulation period.  The mean-age simulations indicated the groundwater age in the valley was strongly influenced by seasonal changes and extreme climatic events. Significant variations existed, from high rainfall recharge percolating young water throughout the domain, to dry extended droughts limiting recharge and increasing the age throughout large sections of the Middle Valley. Age distributions were shown to be strongly influenced by abstraction pressures, depth and geology. Abstractions were shown to skew the age distribution, creating both older and younger mean-ages depending on the location of the observation point, and several simulations indicated the potential misrepresentation of young (potentially contaminated) water quantified as old by mean-age assessment. These results show the dynamic nature of the Middle Valley groundwater system and its inherent vulnerabilities. The Wairarapa transient age distributions are one of the first such examples in New Zealand, and they demonstrate the potential of the information interpreted from age estimates to more effectively manage groundwater resources.</p>


2021 ◽  
Vol 13 (23) ◽  
pp. 4741
Author(s):  
Vivek Agarwal ◽  
Amit Kumar ◽  
David Gee ◽  
Stephen Grebby ◽  
Rachel L. Gomes ◽  
...  

Groundwater variation can cause land-surface movement, which in turn can cause significant and recurrent harm to infrastructure and the water storage capacity of aquifers. The capital cities in the England (London) and India (Delhi) are witnessing an ever-increasing population that has resulted in excess pressure on groundwater resources. Thus, monitoring groundwater-induced land movement in both these cities is very important in terms of understanding the risk posed to assets. Here, Sentinel-1 C-band radar images and the persistent scatterer interferometric synthetic aperture radar (PSInSAR) methodology are used to study land movement for London and National Capital Territory (NCT)-Delhi from October 2016 to December 2020. The land movement velocities were found to vary between −24 and +24 mm/year for London and between −18 and +30 mm/year for NCT-Delhi. This land movement was compared with observed groundwater levels, and spatio-temporal variation of groundwater and land movement was studied in conjunction. It was broadly observed that the extraction of a large quantity of groundwater leads to land subsidence, whereas groundwater recharge leads to uplift. A mathematical model was used to quantify land subsidence/uplift which occurred due to groundwater depletion/rebound. This is the first study that compares C-band PSInSAR-derived land subsidence response to observed groundwater change for London and NCT-Delhi during this time-period. The results of this study could be helpful to examine the potential implications of ground-level movement on the resource management, safety, and economics of both these cities.


2016 ◽  
Author(s):  
Inge E. M. de Graaf ◽  
Rens L. P. H. van Beek ◽  
Tom Gleeson ◽  
Nils Moosdorf ◽  
Oliver Schmitz ◽  
...  

Abstract. Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts as well as evaporation in areas with shallow water tables. Lateral flows between basins can be a significant part of the basins water budget, but most global-scale hydrological models do not consider surface water-groundwater interactions and do not include a lateral groundwater flow component. In this study we simulate groundwater head fluctuation and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5 arc-minutes) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6 % to 20 % of the total aquifer area) changes timing and amplitude of head fluctuations, as well as flow paths and groundwater-surface water interactions rates. Also, timing and magnitude of groundwater head fluctuations are better estimated when confining layers are included. Groundwater flow paths within confining layers are shorter then paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths are simulated crossing catchment boundaries, thereby supporting water budgets of neighboring catchments or aquifer systems. The two-layer transient groundwater model is used to identify hotspots of groundwater depletion resulting in an estimated global groundwater depletion of 6700 km3 over the 1960–2010, consistent with estimates of previous studies.


Water Policy ◽  
2005 ◽  
Vol 7 (5) ◽  
pp. 543-550 ◽  
Author(s):  
Marcella Nanni ◽  
Stephen Foster

Groundwater resources are increasingly being put under pressure owing to population growth, technological progress and economic development. Many countries, however, are unable to address groundwater depletion and pollution owing to weak legal and institutional frameworks. This applies both within national contexts and in respect of international or trans-boundary aquifers (or aquifer systems). The issue is being widely debated within international fora, numbers of countries are revising their water legislation in order to include more specific provisions for groundwater, and in parallel the UN International Law Commission (ILC) is studying trans-boundary groundwater resources with a view to a codification of the law in this regard. However, the key characteristics of groundwater are often misunderstood by non-specialists and, unless resource lawyers and groundwater specialists work much more closely together, there is likelihood of erroneous interpretations of the applicable legal regime. This paper aims to highlight basic concepts and pragmatic management needs, so as to provide a framework within which national and international legislation on groundwater management and protection should be shaped.


2021 ◽  
Vol 930 (1) ◽  
pp. 012055
Author(s):  
D L Setyaningsih ◽  
K Setyawan ◽  
D P E Putra ◽  
Salahuddin

Abstract The high groundwater use in the Randublatung Groundwater Basin area relates to groundwater abstraction for agriculture. Therefore, a question arises on how much groundwater resources in this area may support agricultural groundwater usage. This research has the objective to quantify the groundwater resources in this area. This research conducts a geoelectrical investigation to identify the aquifer’s lithology and observe the groundwater level. The research reveals that resistivity values of subsurface rock layers in the research area range from 0.13 to 124.86 Ωm. The aquifer layer consisted of two aquifer systems, with the hydraulic conductivity varies of the aquifer layer is 0.0001 cm/s until 0.01 cm/s. The aquifer layers estimated to be found at depths vary 5 – 90 m from the ground with thickness range from 10 to 70 m. Meanwhile, the aquiclude layers consisted of clay, silty clay, and sandy clay was estimated to be found at depths varies 0 – 50 m from the ground with thickness varies from 5 to 65 m. by combining those data with a hydraulic gradient of groundwater flow, the dynamic groundwater resources in the research area is estimated between 50 m3/day and 4,691 m3/day.


2021 ◽  
Author(s):  
◽  
Ryan David Evison

<p>This dissertation focuses on the catchment-scale evaluation of groundwater age as a function of space and time in the 270 km² Middle Wairarapa catchment. The simulation of the mean age and point distribution of ages, contributing to a regional age estimate, is a novel demonstration of the recently developed groundwater software, Cornaton (2012). The Wairarapa is in the southern North Island of New Zealand and is a dynamic water catchment exhibiting complex interactions between its rivers and shallow aquifers. Groundwater has been widely utilized since the 1980s for agriculture, horticulture and drinking water; increasing land use development (i.e. irrigation and nutrient application) requires effective regional management of both the quantity and quality of water resources.  Groundwater age provides insights into groundwater flow and transport processes and thus enables better management of groundwater resources. Subsurface water age information enables the interpretation of recharge influence, zones of sensitivity for sustainable abstraction, as well as contamination risk from land-use intensification to drinking water supplies. It is accepted that groundwater is composed of a mixture of water with different ages, however, until very recently mean age has been the primary indicator for groundwater age assessment. Mean age alone can misrepresent the potential for contamination from young water; for example, a groundwater sample with an old mean age may still contain a significant fraction of young water; therefore, a fuller understanding of the age distribution in both time and space is important for groundwater management. The ability to simulate the full distribution of groundwater age within transient numerical groundwater models has only been very recently enabled, through implementation of the time-marching Laplace transform Galerkin technique (TMLTGT), and is demonstrated in this dissertation.  A transient finite-element groundwater flow model originally developed by Greater Wellington Regional Council was converted to simulate transport of the age tracer tritium and groundwater age using the Ground Water (GW) software. Observed tritium concentrations were utilized in the calibration using the Monte Carlo and Gauss-Marquardt-Levenberg methods. Following the calibration of the transport model the GW software was then used to derive pumping well capture zones and directly simulate age throughout the Middle Wairarapa Valley catchment. The advective dispersive equation and the TMLTGT were used for transient mean-age and transient simulations of the full distribution of groundwater age. The results are presented as maps and graphs of both mean age and age distributions throughout the Middle Valley, covering a 15 year simulation period.  The mean-age simulations indicated the groundwater age in the valley was strongly influenced by seasonal changes and extreme climatic events. Significant variations existed, from high rainfall recharge percolating young water throughout the domain, to dry extended droughts limiting recharge and increasing the age throughout large sections of the Middle Valley. Age distributions were shown to be strongly influenced by abstraction pressures, depth and geology. Abstractions were shown to skew the age distribution, creating both older and younger mean-ages depending on the location of the observation point, and several simulations indicated the potential misrepresentation of young (potentially contaminated) water quantified as old by mean-age assessment. These results show the dynamic nature of the Middle Valley groundwater system and its inherent vulnerabilities. The Wairarapa transient age distributions are one of the first such examples in New Zealand, and they demonstrate the potential of the information interpreted from age estimates to more effectively manage groundwater resources.</p>


Sign in / Sign up

Export Citation Format

Share Document