Mechanical Characterization of Austempered Ductile Iron Obtained by Two Step Austempering Process

2017 ◽  
Vol 70 (9) ◽  
pp. 2381-2387 ◽  
Author(s):  
Vinayak Dakre ◽  
D. R. Peshwe ◽  
S. U. Pathak ◽  
Ajay Likhite
2010 ◽  
Vol 50 (2) ◽  
pp. 302-306 ◽  
Author(s):  
Alejandro Basso ◽  
Martín Caldera ◽  
Micro Chapetti ◽  
Jorge Sikora

2019 ◽  
Vol 8 (2) ◽  
pp. 36
Author(s):  
Abel. A. Barnabas ◽  
Akinlabi Oyetunji ◽  
S. O. Seidu

In this research, Scanning Electron Microscope (SEM) analysis was conducted on the produced antimony modified carbidic austempered ductile iron for agricultural implement production. Six different alloys of carbidic austempered ductile iron with varying micro quantities of antimony elements were produced. The produced alloys were heated to austenitic temperature of 910oC, held at this temperature for 1 hour, finally subjected to austempering temperatures of 300°C and 325°C for periods of 1-3 hours. The SEM in conjunction with XRD and EDS was used for the analysis. Microstructural phase morphology, phase constituents and phase compositions were viewed with SEM, XRD and EDS respectively. The results show that various phases such as spiky graphite, blocky carbides, granular carbide, pearlite and ausferrite matrix. The XRD pattern revealed some compounds such as (Fe, Cr)3C, (primary carbide), Cr6C23 (few secondary carbide), (NiFe2O4), chromite (FeCr2O4), Cr7C3 (few eutectic carbide) and Cr3Ni2. In conclusion, it was observed in terms of morphology that chunky graphite, blocky carbide and pearlite phases were present in the cast carbidic ductile iron (CDI) without antimony addition. The CDI with varying quantities of antimony additions shows spiky graphite, granular carbides and pearlite matrix. After the samples were subjected to austempering processes, all the phases were found to be intact except the pearlite phase that transformed to ausferrite phase. The antimony element in the alloys was seen to promote the formation of pearlite phase intensively. The hardness of the samples increases as the antimony addition increases from 0.096wt.% to 0.288wt.% owing to the increase in pearlite phase, while the impact toughness reaches relatively high level, when 0.288wt.% antimony was added, probably due to the refinement of graphite nodules. All the results obtained showed that appropriate content of antimony addition plays an important role in increasing the nucleation rate of graphite nodules, and also lead to improvement in carbide formation thereby providing good balance between wear and impact properties.


2003 ◽  
Vol 22 (4) ◽  
pp. 127-139 ◽  
Author(s):  
C. D'Amato ◽  
C. Verdu ◽  
X. Kleber ◽  
G. Regheere ◽  
A. Vincent

2004 ◽  
Vol 40 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Olivera Eric ◽  
Marina Jovanovic ◽  
Leposava Sidjanin ◽  
Dragan Rajnovic

Microstructure and mechanical properties of Cu, Ni and Mo alloyed cast ductile iron have been investigated after austempering. Samples were austenitised at 860oC for 1h and then austempered at 320oC and 400oC in the interval from 0,5 to 5h. The X-ray diffraction technique and the light microscopy were utilized to investigate the bainitic transformation, while tensile and impact tests were performed for characterization of mechanical properties. By austempering at 320oC in the range between 2 and 5h, a microstructure typical for austempered ductile iron was produced, i.e. a mixture of free bainitic ferrite and highly carbon enriched retained austenite. The characteristic of the whole range of austempering at 400oC is the appearance of martensitic structure. The maximum impact energy (133 J) coincides with the maximum value of volume fraction of retained austenite that was obtained after 2,5h of austempering at 320oC. The appearance of martensite during austempering at 400oC is the main cause for much lower tensile properties than at 320oC.


Sign in / Sign up

Export Citation Format

Share Document