From asset to threat: trajectory of sediment on the Rhône River

Water History ◽  
2021 ◽  
Author(s):  
Joana Guerrin ◽  
Emeline Comby ◽  
Raphaël Morera
Keyword(s):  
2007 ◽  
Vol 23 (5) ◽  
pp. 525-543 ◽  
Author(s):  
Atle Harby ◽  
Jean-Michel Olivier ◽  
Sylvie Merigoux ◽  
Emmanuel Malet

1999 ◽  
Vol 159 (1-4) ◽  
pp. 87-105 ◽  
Author(s):  
Anne-Marie Aucour ◽  
Simon M.F. Sheppard ◽  
Olivier Guyomar ◽  
Jérôme Wattelet

Chemosphere ◽  
2021 ◽  
Vol 271 ◽  
pp. 129889
Author(s):  
Sophia Vauclin ◽  
Brice Mourier ◽  
André-Marie Dendievel ◽  
Philippe Marchand ◽  
Anaïs Vénisseau ◽  
...  

2010 ◽  
Vol 7 (12) ◽  
pp. 4083-4103 ◽  
Author(s):  
J. Para ◽  
P. G. Coble ◽  
B. Charrière ◽  
M. Tedetti ◽  
C. Fontana ◽  
...  

Abstract. Seawater samples were collected monthly in surface waters (2 and 5 m depths) of the Bay of Marseilles (northwestern Mediterranean Sea; 5°17'30" E, 43°14'30" N) during one year from November 2007 to December 2008 and studied for total organic carbon (TOC) as well as chromophoric dissolved organic matter (CDOM) optical properties (absorbance and fluorescence). The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350)] was very low (0.10 ± 0.02 m−1) in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350) could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM) was significantly higher (0.023 ± 0.003 nm−1) in summer than in fall and winter periods (0.017 ± 0.002 nm−1), reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs), was dominated by protein-like component (peak T; 1.30–21.94 QSU) and marine humic-like component (peak M; 0.55–5.82 QSU), while terrestrial humic-like fluorescence (peak C; 0.34–2.99 QSU) remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events might reach Marseilles Bay within 2–3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T) without adding terrestrial fluorescence signatures (peaks C and A). Besides Rhône River plumes, mixing events of the entire water column injected relative aged (peaks C and M) CDOM from the bottom into the surface and thus appeared also as an important source of CDOM in surface waters of the Marseilles Bay. Therefore, the assessment of CDOM optical properties, within the hydrological context, pointed out several biotic (in situ biological production, biological production within Rhône River plumes) and abiotic (photobleaching, mixing) factors controlling CDOM transport, production and removal in this highly urbanized coastal area.


2018 ◽  
Author(s):  
Oriane Etter ◽  
Frédéric Jordan ◽  
Anton J. Schleiss

Abstract. In a context where water management is becoming increasingly important, reliable seasonal forecasting of discharge in rivers is crucial for making decisions several months in advance. This paper explores the potential of seasonal forecasting of run-off volumes produced by ensemble streamflow forecasting using past climatology and comparing it to the more commonly used average of past discharge measurements. The seasonal forecast was obtained for the Arve and Rhone rivers by simulation using the Routing System model for lead times of 30, 90 and 120 days. The initialization was performed on a validated simulation of 12 and 16 years for the Arve and Rhone rivers, respectively, obtained through long-term calibration. The performance was assessed by indicators called accuracy and thinness. The normalized mean average error (NMAE) was used to compare the performance of the seasonal forecast with the average of the past measurements. After a bias correction of the seasonal forecast of the Rhone River with the observed run-off volumes during the different lead times, the correlation of the median forecast with the measurements (accuracy) was larger than 0.55 for all lead times from April to July. The Arve River's accuracy was improved by disregarding the year 2007 member, leading to the floods of the 3rd and 9th of July, for lead times of 90 and 120 days. This resulting in the period of April to July having correlation accuracies higher than 0.5. For both rivers, the 80 % confidence interval of the seasonal forecast was relatively thin compared to the measurements (thinness) for the months of April to July. The NMAE was used to validate the range of validity of the forecast. The correction of the forecast resulted in more months being favorable for seasonal forecasting for the Rhone River. The post-processing on the Arve River decreased the difference between the measurement and the forecast (NMAE). Further investigation should concentrate on dividing the meteorological datasets to produce a strong median forecast and confidence interval


2011 ◽  
Vol 8 (1) ◽  
pp. 549-592 ◽  
Author(s):  
L. Pastor ◽  
C. Cathalot ◽  
B. Deflandre ◽  
E. Viollier ◽  
K. Soetaert ◽  
...  

Abstract. In-situ oxygen microprofiles, sediment organic carbon content and pore-water concentrations of nitrate, ammonium, iron, manganese and sulfides obtained in sediments from the Rhône River prodelta and its adjacent continental shelf were used to constrain a numerical diagenetic model. Results showed that (1) organic matter from the Rhône River is composed of a fraction of fresh material associated to high first-order degradation rate constants (11–33 yr−1), (2) burial efficiency (burial/input ratio) in the Rhône prodelta (within 3 km of the river outlet) can be up to 80%, and decreases to ~20% on the adjacent continental shelf 10–15 km further offshore (3) there is a large contribution of anoxic processes to total mineralization in sediments near the river mouth, certainly due to large inputs of fresh organic material combined with high sedimentation rates, (4) diagenetic by-products originally produced during anoxic organic matter mineralization are almost entirely precipitated (>97%) and buried in the sediment, which leads to (5) a low contribution of the re-oxidation of reduced products to total oxygen consumption. Consequently, total carbon mineralization rates as based on oxygen consumption rates and using Redfield stoichiometry can be largely underestimated in such River Ocean dominated Margins (RiOMar) environments.


Sign in / Sign up

Export Citation Format

Share Document