Fishery analysis using gradient-dependent optimal interpolation

Author(s):  
Chunling Zhang ◽  
Danyang Wang ◽  
Zhenfeng Wang
2021 ◽  
Vol 13 (12) ◽  
pp. 2402
Author(s):  
Weifu Sun ◽  
Jin Wang ◽  
Yuheng Li ◽  
Junmin Meng ◽  
Yujia Zhao ◽  
...  

Based on the optimal interpolation (OI) algorithm, a daily fusion product of high-resolution global ocean columnar atmospheric water vapor with a resolution of 0.25° was generated in this study from multisource remote sensing observations. The product covers the period from 2003 to 2018, and the data represent a fusion of microwave radiometer observations, including those from the Special Sensor Microwave Imager Sounder (SSMIS), WindSat, Advanced Microwave Scanning Radiometer for Earth Observing System sensor (AMSR-E), Advanced Microwave Scanning Radiometer 2 (AMSR2), and HY-2A microwave radiometer (MR). The accuracy of this water vapor fusion product was validated using radiosonde water vapor observations. The comparative results show that the overall mean deviation (Bias) is smaller than 0.6 mm; the root mean square error (RMSE) and standard deviation (SD) are better than 3 mm, and the mean absolute deviation (MAD) and correlation coefficient (R) are better than 2 mm and 0.98, respectively.


2013 ◽  
Vol 318 ◽  
pp. 100-107
Author(s):  
Zhen Shen ◽  
Biao Wang ◽  
Hui Yang ◽  
Yun Zheng

Six kinds of interpolation methods, including projection-shape function method, three-dimensional linear interpolation method, optimal interpolation method, constant volume transformation method and so on, were adoped in the study of interpolation accuracy. From the point of view about the characterization of matching condition of two different grids and interpolation function, the infuencing factor on the interpolation accuracy was studied. The results revealed that different interpolation methods had different interpolation accuracy. The projection-shape function interpolation method had the best effect and the more complex interpolation function had lower accuracy. In many cases, the matching condition of two grids had much greater impact on the interpolation accuracy than the method itself. The error of interpolation method is inevitable, but the error caused by the grid quality could be reduced through efforts.


2021 ◽  
Vol 11 (11) ◽  
pp. 5286
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Hongkai Shi ◽  
Xiufeng He

Mean dynamic topography (MDT) is crucial for research in oceanography and climatology. The optimal interpolation method (OIM) is applied to MDT modeling, where the error variance–covariance information of the observations is established. The global geopotential model (GGM) derived from GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity data and the mean sea surface model derived from satellite altimetry data are combined to construct MDT. Numerical experiments in the Kuroshio over Japan show that the use of recently released GOCE-derived GGM derives a better MDT compared to the previous models. The MDT solution computed based on the sixth-generation model illustrates a lower level of root mean square error (77.0 mm) compared with the ocean reanalysis data, which is 2.4 mm (5.4 mm) smaller than that derived from the fifth-generation (fourth-generation) model. This illustrates that the accumulation of GOCE data and updated data preprocessing methods can be beneficial for MDT recovery. Moreover, the results show that the OIM outperforms the Gaussian filtering approach, where the geostrophic velocity derived from the OIM method has a smaller misfit against the buoy data, by a magnitude of 10 mm/s (17 mm/s) when the zonal (meridional) component is validated. This is mainly due to the error information of input data being used in the optimal interpolation method, which may obtain more reasonable weights of observations than the Gaussian filtering method.


2010 ◽  
Author(s):  
Ali Özbek ◽  
Massimiliano Vassallo ◽  
A. Kemal Özdemir ◽  
Daniele Molteni ◽  
Yaşar Kemal Alp

2011 ◽  
Vol 6 (1) ◽  
pp. 211-217
Author(s):  
S. Federico ◽  
E. Avolio ◽  
F. Fusto ◽  
R. Niccoli ◽  
C. Bellecci

Abstract. Since June 2008, 1-h temperature forecasts for the Calabria region (Southern Italy) are issued at 2.5 km horizontal resolution at CRATI/ISAC-CNR. Forecasts are available online at http://meteo.crati.it/previsioni.html (every 6-h). This paper shows the forecast performance out to three days for one climatological year (from 1 December 2008 to 30 November 2009, 365 run) for minimum, mean and maximum temperature. The forecast is evaluated against gridded analyses at the same horizontal resolution. Gridded analysis is based on Optimal Interpolation (OI) and uses a de-trending technique for computing the background field. Observations from 87 thermometers are used in the analysis system. In this paper cumulative statistics are shown to quantify forecast errors out to three days.


2005 ◽  
Vol 133 (8) ◽  
pp. 2310-2334 ◽  
Author(s):  
Anna Borovikov ◽  
Michele M. Rienecker ◽  
Christian L. Keppenne ◽  
Gregory C. Johnson

Abstract One of the most difficult aspects of ocean-state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model–observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross covariances between different model variables used. Here a comparison is made between a univariate optimal interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature profiles. In the UOI case only temperature is updated using a Gaussian covariance function. In the MvOI, salinity, zonal, and meridional velocities as well as temperature are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimate of the forecast error statistics is made by Monte Carlo techniques from an ensemble of model forecasts. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross covariances between the fields of different physical variables constituting the model-state vector, at the same time incorporating the model’s dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere–Ocean array have been assimilated in this study. To investigate the efficacy of the multivariate scheme, two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity, and temperature. For reference, a control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when the multivariate correction is used, as is evident from the analyses of the rms differences between these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating water masses with properties close to the observed, while the UOI fails to maintain the temperature and salinity structure.


2002 ◽  
Vol 32 (9) ◽  
pp. 2509-2519 ◽  
Author(s):  
Gerrit Burgers ◽  
Magdalena A. Balmaseda ◽  
Femke C. Vossepoel ◽  
Geert Jan van Oldenborgh ◽  
Peter Jan van Leeuwen

Abstract The question is addressed whether using unbalanced updates in ocean-data assimilation schemes for seasonal forecasting systems can result in a relatively poor simulation of zonal currents. An assimilation scheme, where temperature observations are used for updating only the density field, is compared to a scheme where updates of density field and zonal velocities are related by geostrophic balance. This is done for an equatorial linear shallow-water model. It is found that equatorial zonal velocities can be detoriated if velocity is not updated in the assimilation procedure. Adding balanced updates to the zonal velocity is shown to be a simple remedy for the shallow-water model. Next, optimal interpolation (OI) schemes with balanced updates of the zonal velocity are implemented in two ocean general circulation models. First tests indicate a beneficial impact on equatorial upper-ocean zonal currents.


Sign in / Sign up

Export Citation Format

Share Document