Micronesian Mangrove Forest Structure and Tree Responses to a Severe Typhoon

Wetlands ◽  
2010 ◽  
Vol 30 (6) ◽  
pp. 1077-1084 ◽  
Author(s):  
J. Boone Kauffman ◽  
Thomas G. Cole
2019 ◽  
Vol 11 (3) ◽  
pp. 367 ◽  
Author(s):  
Florent Taureau ◽  
Marc Robin ◽  
Christophe Proisy ◽  
François Fromard ◽  
Daniel Imbert ◽  
...  

Despite the low tree diversity and scarcity of the understory vegetation, the high morphological plasticity of mangrove trees induces, at the stand level, a very large variability of forest structures that need to be mapped for assessing the functioning of such complex ecosystems. Fully constrained linear spectral unmixing (FCLSU) of very high spatial resolution (VHSR) multispectral images was tested to fine-scale map mangrove zonations in terms of horizontal variation of forest structure. The study was carried out on three Pleiades-1A satellite images covering French island territories located in the Atlantic, Indian, and Pacific Oceans, namely Guadeloupe, Mayotte, and New Caledonia archipelagos. In each image, FCLSU was trained from the delineation of areas exclusively related to four components including either pure vegetation, soil (ferns included), water, or shadows. It was then applied to the whole mangrove cover imaged for each island and yielded the respective contributions of those four components for each image pixel. On the forest stand scale, the results interestingly indicated a close correlation between FCLSU-derived vegetation fractions and canopy closure estimated from hemispherical photographs (R2 = 0.95) and a weak relation with the Normalized Difference Vegetation Index (R2 = 0.29). Classification of these fractions also offered the opportunity to detect and map horizontal patterns of mangrove structure in a given site. K-means classifications of fraction indeed showed a global view of mangrove structure organization in the three sites, complementary to the outputs obtained from spectral data analysis. Our findings suggest that the pixel intensity decomposition applied to VHSR multispectral satellite images can be a simple but valuable approach for (i) mangrove canopy monitoring and (ii) mangrove forest structure analysis in the perspective of assessing mangrove dynamics and productivity. As with Lidar-based surveys, these potential new mapping capabilities deserve further physically based interpretation of sunlight scattering mechanisms within forest canopy.


1991 ◽  
Vol 111 (1) ◽  
pp. 147-155 ◽  
Author(s):  
A. I. Robertson ◽  
P. A. Daniel ◽  
P. Dixon

2015 ◽  
Vol 313 ◽  
pp. 653-660 ◽  
Author(s):  
Gabriela Calegario ◽  
Marcos Sarmet Moreira de Barros Salomão ◽  
Carlos Eduardo de Rezende ◽  
Elaine Bernini

1997 ◽  
Vol 13 (2) ◽  
pp. 293-302 ◽  
Author(s):  
Keith A. McGuinness

ABSTRACTStudies of predation on propagules of the mangroves Avicennia marina, Bruguiera exaristata, Ceriops tagal and Rhizophora stylosa were made in a forest in northern Australia to test the generality of the dominance-predation model. This model states that an inverse relationship exists between the dominance of a species in the canopy of mangrove forests and the rate of predation on the propagules of that species. Significant differences in predation were found among the four species, and among patches of forest dominated by the different species. Predators attacked more than 50% of the propagules of all species except R. stylosa, so are likely to significantly affect forest structure. The intensity of predation did not, however, vary as the dominance-predation model predicted. Instead, predation on the propagules of a species appeared to depend on the availability of propagules of other, more highly preferred, species.


2009 ◽  
Vol 85 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Luzhen Chen ◽  
Qijie Zan ◽  
Mingguang Li ◽  
Jinyu Shen ◽  
Wenbo Liao

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
JAMES G. KAIRO ◽  
MICHAEL NJOROGE GITHAIGA ◽  
KIPLAGAT KOTUT ◽  
FRANCIS KARIUKI

Abstract. Githaiga MN, Kotut K, Kariuki F, Kairo JG. 2019. Structure and biomass accumulation of natural mangrove forest at Gazi Bay, Kenya. Bonorowo Wetlands 9: 18-32. The goal of this study was to determine the forest structure and estimate biomass accumulation above and below ground in the mangrove forest of Gazi Bay. The western, middle, and eastern forest blocks of the Gazi Bay mangrove forest were investigated for forest structure, whereas the western forest block was determined for biomass accumulation. To calculate below-ground biomass accumulation, in-growth cores of 80 cm long, 20 cm broad, and 60 cm deep were employed. Above-ground biomass accumulation was calculated using data on tree height and stem diameter at breast height (DBH-130). Leaf phenology was observed by tagging shoots. At the start, environmental variables were measured every four months for a year across four mangrove species zones. The linear regeneration sampling approach was used to determine the composition and distribution pattern of natural regeneration (LRS). Salinity revealed a strong negative connection with above-ground biomass accumulation among the soil environment characteristics studied. Sonneratia alba had the highest biomass accretion rate of 10.5 1.9 t ha-1 yr-1 among the four forest zones. Rhizophora mucronata (8.5 0.8 t ha-1 yr-1), Avicennia marina (5.2 1.8 t ha-1 yr-1), and Ceriops tagal (2.6 1.5 t ha-1 yr-1) were the next most abundant species. Above-ground and below-ground biomass accumulation differed significantly among zones (F (3, 8) = 5.42, p = 0.025) and (F (3, 8) = 16.03, p = 0 001), respectively. There was a significant difference in total biomass accumulation across zones (F (3, 8) =15.56, p = 0.001). For the entire forest, a root : shoot biomass accumulation ratio of 2 : 5 was calculated. This study's findings provide more accurate estimates of mangrove carbon capture and storage, which can be used in carbon credit discussions in the emerging carbon market.


Sign in / Sign up

Export Citation Format

Share Document