scholarly journals Development of gluten free eggless cake using gluten free composite flours made from sprouted and malted ingredients and its physical, nutritional, textural, rheological and sensory properties evaluation

2018 ◽  
Vol 55 (7) ◽  
pp. 2621-2630 ◽  
Author(s):  
Dipika Agrahar-Murugkar ◽  
Aiman Zaidi ◽  
Shraddha Dwivedi
2013 ◽  
Vol 113 (9) ◽  
pp. A60 ◽  
Author(s):  
M.G. Baker ◽  
H. Hudson ◽  
L. Flores ◽  
S. Bhaduri ◽  
R. Ghatak ◽  
...  

2014 ◽  
Vol 239 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Anika Wolter ◽  
Anna-Sophie Hager ◽  
Emanuele Zannini ◽  
Michael Czerny ◽  
Elke K. Arendt

Author(s):  
А.К. СТРЕЛКОВА ◽  
И.Б. КРАСИНА ◽  
К.Н. СТОРЧЕУС ◽  
Е.В. ФИЛИППОВА

Необходимость разработки безглютеновых продуктов обусловлена ростом численности людей страдающих целиакией, распространенность которой составляет 1 случай на 100–200 человек населения. Решение проблем, возникающих при производстве безглютеновых мучных кондитерских изделий, делает актуальным поиск новых видов сырья, не содержащего глютен и способного улучшать потребительские свойства изделий. В качестве источника безглютенового сырья была выбрана гречневая мука (ГМ). Получено безглютеновое печенье из ГМ в сочетании с различными гидроколлоидами – камедями акации, трагаканта, гуаровой и ксантановой, которые по отдельности добавляли в образцы ГМ в количестве 1г/100 г, и исследовано его физико-химические и сенсорные свойства в сравнении с аналогичными свойствами печенья из пшеничной муки (ПМ). Установлено, что образцы ГМ с добавкой камедей имеют более высокое содержание влаги, а печенье, полученное из смеси ГМ с камедью по разработанной нами технологии, – большую толщину, массу и сниженную прочность при разрушении по сравнению с ГМ и печеньем, изготовленным из нее. При сенсорной оценке качества изделий, проведенной по девятибалльной гедонистической шкале, установлено, что самые высокие показатели качества имеет печенье из ПМ, самые низкие – печенье, приготовленное из ГМ. Внесение камедей улучшило сенсорные показатели изделий на основе ГМ. Лучшим признан образец печенья на основе ГМ с добавлением ксантановой камеди. Таким образом, использование гидроколлоидов улучшает водосвязывающую способность муки и сенсорные показатели изделия – цвет, аромат, вкус и дает возможность получить безглютеновое печенье достаточно высокого качества, сопоставимого с качеством печенья из пшеничной муки. The need to develop gluten-free products is due to the growing number of people suffering from celiac disease, the prevalence of which is 1 case per 100–200 people of the population. Solving the problems that arise in the production of gluten-free flour confectionery products makes it relevant to search for new types of raw materials that do not contain gluten and can improve the consumer properties of products. Buckwheat flour (BF) was chosen as a source of gluten-free raw materials. Gluten-free cookies from BF were obtained in combination with various hydrocolloids-acacia, tragacanth, guar and xanthan gums, which were separately added to BF samples in the amount of 1 g/100 g, and its physical and chemical and sensory properties were studied in comparison with similar properties of wheat flour cookies (WF). The purpose of this work is to obtain gluten-free cookies from BF in combination with various hydrocolloids – acacia gum, tragacanth, guar gum and xanthan gum, which were separately added to BF in the amount of 1 g/100 g, and to study its physical, chemical and sensory properties in comparison with similar properties of cookies from WF. It was found that the samples of BF with the addition of gums have higher moisture content, and the cookies obtained from a mixture of BF with gum according to the technology developed by us – a greater thickness, weight and reduced strength at destruction compared to BF and cookies made from it. In the sensory evaluation of the quality of products conducted on a nine-point hedonistic scale, it was found that the highest quality indicators are cookies made from WF, the lowest – cookies made from BF. The introduction of gums improved the sensory performance of BF-based products. A sample of BF-based cookies with the addition of xanthan gum was recognized as the best. Thus, the use of hydrocolloids improves the water-binding ability of flour and the sensory characteristics of the product – color, aroma, taste, and makes it possible to obtain gluten-free cookies of sufficiently high quality, comparable to the quality of cookies made from wheat flour.


2019 ◽  
Vol 49 (4) ◽  
pp. 517-527 ◽  
Author(s):  
Katira da Mota Huerta ◽  
Caroline Pagnossim Boeira ◽  
Marcela Bromberger Soquetta ◽  
Jamila dos Santos Alves ◽  
Ernesto Hashime Kubota ◽  
...  

Purpose The preparation of gluten-free bread is a challenge because the gluten in wheat is the main ingredient responsible for the retention of the gases which cause the bread to rise. This paper aims to develop breads without gluten and fat, and to evaluate the effect of the use of chia (Salvia hispanic L.) flour on the physical, nutritional and sensory properties of the breads that were developed. Design/methodology/approach Three formulations were developed with different proportions of chia flour (2.5, 5 and 7.5%), fat-free. Physiochemical, sensorial analyses were performed out in three repetitions (p-value = 0.05). Findings In the nutritional assessment, the results demonstrated that 7.5% chia showed higher levels of protein (15.1%), lipid (3.43%), total fiber (7.04%) and lower levels of carbohydrates (22.49%), with significant nutrient enrichment (p-value = 0.05). The specific volume and the elevation of the dough decreased with the addition of chia flour. In the sensorial analysis, the treatments with chia flour showed no significant difference regarding flavor and texture when compared to the standard. The addition of chia improved the nutritional and sensory properties (p-value = 0.05). Originality/value The chia flour improved the nutritional characteristics of the breads, in the reduction of carbohydrate content and the increase in the content of protein, minerals and fiber. It presented good acceptability and good nutritional characteristics, providing a healthy and differentiated variation in this segment.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Arubi P. Alobo ◽  
Gibson L. Arueya

Wheat and cassava composite breads are generally associated with volume and textural defects in contrast with the traditional wheat based variants. Efforts to mitigate this challenge through use of synthetic additives have been unsuccessful owing to safety concerns. The objective of this study was to explore Grewia venusta mucilage as a potential natural additive in wheat-cassava composite bread production. Sweet cassava flour was used to replace wheat flour at 100: 0 (control), 90:10, 80:20 and 70:30% ratios in bread making. Aqueous extract of G. venusta stem bark was oven dried (50±3 oC), milled and added at 0, 1.0 and 2.0% (w/w) to the flour mixtures. These, along with other conventional inputs were mixed, and used to produce bread. Proximate compositions, physical and sensory properties of the bread loaves were evaluated. Cassava flour inclusion resulted in significant (P≤0.05) decrease in the protein content of the control from 18.1% to 12.1% (90:10%), 11.5% (80:20%) and 9.9% (70:30%). Addition of mucilage marginally increased the protein and dietary fibre contents of the loaves. Loaves containing 1-2% mucilage were more regular in shape with smoother crust than those without mucilage. Cassava flour addition at 10%, 20% and 30% decreased loaf height from 6.0 cm to 5.8 cm, 5.7 cm and 5.5 cm, as well as loaf volume from 815.5 cm3 to 783.1 cm3, 776.8 cm3 and 744.5 cm3, respectively. Mucilage inclusion resulted in increased heights and volumes of the loaves and reduced weights of loaf fragments upon slicing. The mucilage significantly improved the texture of the bread loaves. 


2018 ◽  
Vol 10 (1) ◽  
pp. 13-16
Author(s):  
Cosmina-Mădălina Cherăţoiu ◽  
Mihai Ognean ◽  
Claudia Felicia Ognean ◽  
Ioan Danciu

Abstract The study was undertaken to assess the quality and sensory properties of gluten free biscuits (GFB) offered in local market in Sibiu. The chemical, physico-chemical parameters and sensory qualities of biscuits were studied. The result revealed that moisture of GFB is normal (<5-6%), the water activity is under 0.3 for 6 of the samples, the breaking point is 0.878 (B7) and 1.564 (B1) as a result of different ingredient used (mix flour-corn, soya, rice for sample B1, rice-chickpeas flour for sample B7). Sensory qualities were determinate by using the hedonic test and showed that the GFB were well accepted by the consumers.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 343 ◽  
Author(s):  
Valentina Melini ◽  
Francesca Melini ◽  
Rita Acquistucci

Consumption of food products rich in phenolic compounds has been associated to reduced risk of chronic disease onset. Daily consumed cereal-based products, such as bread and pasta, are not carriers of phenolic compounds, since they are produced with refined flour or semolina. Novel formulations of pasta have been thus proposed, in order to obtain functional products contributing to the increase in phenolic compound dietary intake. This paper aims to review the strategies used so far to formulate functional pasta, both gluten-containing and gluten-free, and compare their effect on phenolic compound content, and bioaccessibility and bioavailability thereof. It emerged that whole grain, legume and composite flours are the main substituents of durum wheat semolina in the formulation of functional pasta. Plant by-products from industrial food wastes have been also used as functional ingredients. In addition, pre-processing technologies on raw materials such as sprouting, or the modulation of extrusion/extrusion-cooking conditions, are valuable approaches to increase phenolic content in pasta. Few studies on phenolic compound bioaccessibility and bioavailability in pasta have been performed so far; however, they contribute to evaluating the usefulness of strategies used in the formulation of functional pasta.


Sign in / Sign up

Export Citation Format

Share Document