scholarly journals Promotion of maize growth by a yellow morel, Morchella crassipes

Symbiosis ◽  
2019 ◽  
Vol 80 (1) ◽  
pp. 33-41
Author(s):  
Phonepaserd Phanpadith ◽  
Zhongdong Yu ◽  
Dan Yu ◽  
Sitthixay Phongsavath ◽  
Kuocheng Shen ◽  
...  

AbstractFungal species of morel (genus Morchella) have recently been found to form a symbiotic relationship with grasses. Our previous study documented that M. crassipes from Shaanxi, northwest China, increased growth of sweet corn Zea mays var. saccharata and suppressed Fusarium infections. In the present study, we examined the effect of M. crassipes inoculation on dent corn, Zea mays var. indentata cv. Plant growth response indexes and variables and soil variables were used to demonstrate how M. crassipes inoculation stimulates maize growth. Three suspensions of M. crassipes mycelium (50, 100, 150 mL) were inoculated into Zea may var. indentata. The results showed that M. crassipes inoculation significantly affected growth of all the inoculated maize plants and influenced some variables and indexes that are related to tissue specificity and dose dependence. Soil moisture, available K and P accumulation by M. crassipes were affected in inoculated plants and resulted in growth enhancements that were equal to that of the plants treated with urea. Our findings reveal that inoculation with M. crassipes had a positive effect on maize yield, making the crop system more sustainable. Thus M. crassipes has the potential to become a supplement or an alternative to urea fertilizers.

1992 ◽  
Vol 57 (2) ◽  
pp. 454-457 ◽  
Author(s):  
S. ZHU ◽  
J. R. MOUNT ◽  
J. L. COLLINS

2018 ◽  
Vol 154 ◽  
pp. 01017 ◽  
Author(s):  
Agustine Susilowati ◽  
Puspa Dewi Lotulung ◽  
Yati Maryati ◽  
Aspiyanto

A modification on nixtamalization process of dent corn (Zea mays identata) was conducted in order to recover natural folic acid-rich corn. Nixtamalization process on varieties of white dent corn and yellow dent corn subsequently were performed by steeping solution of Ca(OH)2 at concentrations of 0, 10, 20 and 30 % (w/w corn dissolved protein) for 18 hours, and boiling at 90 °C for 15, 30, 45 and 60 minutes. Result of research showed that concentration of Ca(OH)2 solution becoming more and more high and long boiling time increased both folic acid and reducing sugar, dropped total solids and total sugar, and fluctuated dissolved protein for both types of corn. Nixtamalization optimalization of white dent corn and yellow dent corn were achieved at combination of Ca(OH)2 20 % (w/w corn dissolved protein) for 60 minutes of boiling and Ca(OH)2 30 % for 30 minutes of boiling and gave folic acid of 466.81 and 506.74 μg/mL, respectively. In this condition, it is occurred an increase of folic acid 192.3 % (1.9 folds) and 139.89 % (1.4 folds) when compared to initial material of corn. Identification on folic acid monomer and glutamic acid monomer of both nixtamalized dent corn and yellow dent corn at optimum operation condition displayed domination of folic acid monomer with molecular weight (MW) 442.56 Dalton (Da.) with relative intensity 25.51 %, and 441.73 Da. with relative intensity 100 %, while glutamic acid monomer of nixtamalized yellow dent corn and nixtamalized white dent corn were dominated by monomer with MWs of 148.27 Da. and 148.32 Da., and relative intensity 3.73 and 1.8 %.


2019 ◽  
Vol 7 (3) ◽  
pp. 322-334 ◽  
Author(s):  
Guoqiang Zhang ◽  
Dongping Shen ◽  
Bo Ming ◽  
Ruizhi Xie ◽  
Xiuliang Jin ◽  
...  

2013 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
Wahyu Astiko ◽  
Ika Rochdjatun Sastrahidayat ◽  
Syamsuddin Djauhari ◽  
Anton Muhibuddin

A glass house study was conducted to evaluate the contribution of indigenous arbuscular mycorrhiza fungi (AMF) in improving maize yield grown on sandy loam of Northern Lombok. The package of organic fertilizers treatments were tested including: without inoculation of mycorrhiza, inoculation mycorrhiza and no added inorganic fertilizers, inoculation of mycorrhiza with cattle manure added, inoculation of mycorrhiza with rock phosphate added and inoculation mycorrhiza with inorganic fertilizers. The treatments were arranged using a Completely Randomized Design with four replications. The results of the study show that the inoculation of AMF significantly increased soil concentration of N, available-P, K and organic-C by 37.39%, 60.79%, 66.66% and 110.15% respectively observed at 60 days after sowing (DAS). The similar trend was also found at 100 DAS, where those nutrients increased by 21.48%, 69%, 43.93% and 37.07%, respectively compared to control. The improving of soil fertility status was also reflected by nutrients uptake (i.e. N, P, K, Ca) as well as growth and yield of maize. N, P, K and Ca uptake increased by 1,608%, 1,121%, 533% and 534%, respectively. Roots and top dry biomass at 60 DAS increased by 718.40% and 337.67%, respectively. The trend increased of the biomass was followed by observation at 100 DAS. Yield components including cobs, grain and weight of 100 grains increased by 313.60%, 411.84% and 137.54%, respectively. In addition, the inoculation of AM with F2 contributed significantly to the spore numbers and root infection.[How to Cite : Astiko W, IR Sastrahidayat, S Djauhari, and A Muhibuddin. 2013. The Role of Indigenous Mycorrhiza in Combination with Cattle Manure in Improving Maize Yield (Zea Mays L) on Sandy Loam of Northern Lombok, Eastern of Indonesia. J Trop Soils, 18 (1): 53-58. doi: 10.5400/jts.2013.18.1.53][Permalink/DOI: www.dx.doi.org/10.5400/jts.2013.18.1.53]


BUANA SAINS ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 1 ◽  
Author(s):  
Nur Winda Rachmadhani ◽  
Didik Hariyono ◽  
Mudji Santoso

Azotobacter sp. is a non-symbiotic bacteria that has the ability to mobilize nitrogen from a form that is not available in a form that is available for plants. Inoculation of Azotobacter sp. into the planting medium can be used as a supplier of nitrogen required by the plant. Utilization of Azotobacter sp. as biofertilizer has the ability to minimize the use of chemical fertilizers, improve the soil fertility and increase the microbial activity in the rhizosphere of plants. Inoculation of Azotobacter sp. into the planting medium is one alternative to improve the efficiency of urea fertilizer in the maize cultivation. The result of this research showed that the application of Azotobacter sp. with the dose of 10 ml l-1 and 20 ml l-1 on the urea fertilization with the dose of 150 kg ha-1 were able to increase the growth of maize, so that maize has growth that was not significantly different with the maize that got urea with the dose of 225 kg ha-1 and 300 kg ha-1. Inoculation of Azotobacter sp. in the planting media, either with the dose of 10 ml l-1or 20 ml l-1were able to increase the maize yield when compared to the treatment without Azotobacter sp. Inoculation of Azotobacter sp. into the planting medium was able to increase the maize yield. However, increasing the dose of Azotobacter sp. more than 10 ml l-1 did not affect to increase the maize yield. Maize yield reached the optimum value when the dose of urea supplied was153.50 kg ha-1.


Sign in / Sign up

Export Citation Format

Share Document