scholarly journals Smart water flooding performance in carbonate reservoirs: an experimental approach for tertiary oil recovery

2019 ◽  
Vol 9 (4) ◽  
pp. 2643-2657 ◽  
Author(s):  
Arman Darvish Sarvestani ◽  
Shahab Ayatollahi ◽  
Mehdi Bahari Moghaddam
2012 ◽  
Vol 594-597 ◽  
pp. 2541-2544
Author(s):  
Xiao Hui Wu ◽  
Kao Ping Song ◽  
Chi Dong ◽  
Ji Cheng Zhang ◽  
Jing Fu Deng

As line well pattern is the main development technique in the thin and poor oil layers of Daqing Oilfield South West Ⅱ PⅠ group, the layers have been idle and the degree of reserve recovery is far less than the region level. In response to these problems, we analyzed the balanced flood performance of various layers and the remaining oil distribution through numerical simulation technique. It shows that, the main remaining oil type of intended layers is caused by voidage-injection imperfection. Considering the needs of the follow-up infill well pattern and tertiary oil recovery, we decided to keep the well network independent and integrated without disturbing the pattern configuration and main mining object of various sets of well pattern. Finally we confirmed to perforate-adding the first infill wells of intended layers to consummate the water flooding regime. Through analyzing the production target of different well pattern optimization programs relatively, it shows that the best program has regular well pattern and large drilled thickness.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Oluwasanmi Olabode ◽  
David Alaigba ◽  
Daniel Oramabo ◽  
Oreofeoluwa Bamigboye

In this project, low-salinity water flooding has been modeled on ECLIPSE black oil simulator in three cases for a total field production life of twenty-five years. In the first case, low-salinity water flooding starts fifteen years after secondary water flooding. For the second case, low-salinity water flooding starts five years after secondary water flooding and runs till the end of the field production life. For the third case, low-salinity water flooding starts five years after secondary water flooding, but low-salinity water flooding is injected in measured pore volumes for a short period of time; then, high-salinity water flooding was resumed till the end of the field production life. This was done to measure the effect of low-salinity water flooding as slug injection. From the three cases presented, oil recovery efficiency, field oil production rate, and field water cut were observed. Increased percentages of 22.66%, 35.12%, and 26.77% were observed in the three cases, respectively.


2020 ◽  
Vol 17 (3) ◽  
pp. 749-758
Author(s):  
Omolbanin Seiedi ◽  
Mohammad Zahedzadeh ◽  
Emad Roayaei ◽  
Morteza Aminnaji ◽  
Hossein Fazeli

AbstractWater flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs. The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate reservoirs. During seawater injection in carbonate formations, the interactions between potential seawater ions and the carbonate rock at a high temperature can alter the wettability to a more water-wet condition. This paper studies the wettability of one of the Iranian carbonate reservoirs which has been under Persian Gulf seawater injection for more than 10 years. The wettability of the rock is determined by indirect contact angle measurement using Rise in Core technique. Further, the characterization of the rock surface is evaluated by molecular kinetic theory (MKT) modeling. The data obtained from experiments show that rocks are undergoing neutral wetting after the aging process. While the wettability of low permeable samples changes to be slightly water-wet, the wettability of the samples with higher permeability remains unchanged after soaking in seawater. Experimental data and MKT analysis indicate that wettability alteration of these carbonate rocks through prolonged seawater injection might be insignificant.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Malek Jalilian ◽  
Peyman Pourafshary ◽  
Behnam Sedaee Sola ◽  
Mosayyeb Kamari

Designing smart water (SW) by optimizing the chemical composition of injected brine is a promising low-cost technique that has been developed for both sandstone and carbonate reservoirs for several decades. In this study, the impact of SW flooding during tertiary oil recovery phase was investigated by core flooding analysis of pure limestone carbonate rocks. Increasing the sulfate ion concentration by using CaSO4 and MgSO4 of NaCl concentration and finally reducing the total salinity were the main manipulations performed to optimize SW. The main objective of this research is to compare active cations including Ca2+ and Mg2+ in the presence of sulfate ions (SO42−) with regard to their efficiency in the enhancement of oil production during SW flooding of carbonate cores. The results revealed a 14.5% increase in the recovery factor by CaSO4 proving its greater effectiveness compared to MgSO4, which led to an 11.5% production enhancement. It was also realized that low-salinity water flooding (LSWF) did not lead to a significant positive effect as it contributed less than 2% in the tertiary stage.


Sign in / Sign up

Export Citation Format

Share Document