scholarly journals Quantification method of suspended solids in micromodel using image analysis

2021 ◽  
Vol 11 (5) ◽  
pp. 2271-2286
Author(s):  
Ahmad Fadhil Jahari ◽  
Siti Rohaida Mohd Shafian ◽  
Hazlina Husin ◽  
Norzafirah Razali ◽  
Sonny Irawan

AbstractMicromodel can provide valuable information to improve understanding of pore-scale transport phenomenon and can also be utilized to simulate the transport process at pore scale. This research aims to propose settlement option for quantification of suspended solids in micromodel. The micromodel is used to mimic the formation damage which occurs in reservoir formation that could simultaneously affect enhanced oil recovery. This is done by utilizing visual image interpretation through image analysis on micromodel chip. Following the quantification of suspended solids, the micromodel was injected with brine that eventually forms agglomeration. Images are taken from NIS-Element AR microscope automatically in RGB color profile and then made into grayscale and finally into binary modes. Since the micromodel is simulated in 2D form structure, the quantification method complemented with image analysis is focusing on the quantified area, µm2 region of interest categorized into 3 main groups of area B05, M45 and T50, respectively. This research will explore on segmentation and thresholding processes of the visual data acquired from micromodel experiment. An image-based computational algorithm is programmed in MATLAB Image Processing Toolbox and ImageJ; hence, suspended solids in porous media could be quantified from the visual image executed in micromodel.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2305
Author(s):  
Xiangbin Liu ◽  
Le Wang ◽  
Jun Wang ◽  
Junwei Su

The particles, water and oil three-phase flow behaviors at the pore scale is significant to clarify the dynamic mechanism in the particle flooding process. In this work, a newly developed direct numerical simulation techniques, i.e., VOF-FDM-DEM method is employed to perform the simulation of several different particle flooding processes after water flooding, which are carried out with a porous structure obtained by CT scanning of a real rock. The study on the distribution of remaining oil and the displacement process of viscoelastic particles shows that the capillary barrier near the location with the abrupt change of pore radius is the main reason for the formation of remaining oil. There is a dynamic threshold in the process of producing remaining oil. Only when the displacement force exceeds this threshold, the remaining oil can be produced. The flow behavior of particle–oil–water under three different flooding modes, i.e., continuous injection, alternate injection and slug injection, is studied. It is found that the particle size and the injection mode have an important influence on the fluid flow. On this basis, the flow behavior, pressure characteristics and recovery efficiency of the three injection modes are compared. It is found that by injecting two kinds of fluids with different resistance increasing ability into the pores, they can enter into different pore channels, resulting in the imbalance of the force on the remaining oil interface and formation of different resistance between the channels, which can realize the rapid recovery of the remaining oil.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Chuan Lu ◽  
Wei Zhao ◽  
Yongge Liu ◽  
Xiaohu Dong

Oil-in-water (O/W) emulsions are expected to be formed in the process of surfactant flooding for heavy oil reservoirs in order to strengthen the fluidity of heavy oil and enhance oil recovery. However, there is still a lack of detailed understanding of mechanisms and effects involved in the flow of O/W emulsions in porous media. In this study, a pore-scale transparent model packed with glass beads was first used to investigate the transport and retention mechanisms of in situ generated O/W emulsions. Then, a double-sandpack model with different permeabilities was used to further study the effect of in situ formed O/W emulsions on the improvement of sweep efficiency and oil recovery. The pore-scale visualization experiment presented an in situ emulsification process. The in situ formed O/W emulsions could absorb to the surface of pore-throats, and plug pore-throats through mechanisms of capture-plugging (by a single emulsion droplet) and superposition-plugging or annulus-plugging (by multiple emulsion droplets). The double-sandpack experiments proved that the in situ formed O/W emulsion droplets were beneficial for the mobility control in the high permeability sandpack and the oil recovery enhancement in the low permeability sandpack. The size distribution of the produced emulsions proved that larger pressures were capable to displace larger O/W emulsion droplets out of the pore-throat and reduce their retention volumes.


Micron ◽  
2021 ◽  
pp. 103195
Author(s):  
Arnab Kumar Pal ◽  
Siddharth Garia ◽  
K. Ravi ◽  
Archana M. Nair
Keyword(s):  

2021 ◽  
Author(s):  
Abubakar Isah ◽  
Abdulrauf Rasheed Adebayo ◽  
Mohamed Mahmoud ◽  
Lamidi O. Babalola ◽  
Ammar El-Husseiny

Abstract Capillary pressure (Pc) and electrical resistivity index (RI) curves are used in many reservoir engineering applications. Drainage capillary pressure curve represents a scenario where a non-wetting phase displaces a wetting phase such as (i) during gas injection (ii) gas storage in reservoirs (e.g. aquifer or depleted hydrocarbon reservoirs). The gas used for injection is typically natural gas, N2, or CO2. Gas storage principally used to meet requirement variations, and water injection into oil-wet reservoirs are drainage processes. Resistivity index (RI) curve which is used to evaluate the potential of oil recovery from a reservoir, is also an important tool used in log calibration and reservoir fluid typing. The pore drainage mechanism in a multimodal pore system is important for effective recovery of hydrocarbon reserves; enhance oil recovery (EOR) planning and underground gas storage. The understanding of pore structure and drainage mechanism within a multimodal pore system during petrophysical analysis is of paramount importance to reservoir engineers. Therefore, it becomes inherent to study and establish a way to relate these special core analyses laboratory (SCAL) methods with quick measurements such as the nuclear magnetic resonance (NMR) to reduce the time requirement for analysis. This research employed the use of nuclear magnetic resonance (NMR) to estimate saturation exponent (n) of rocks using nitrogen as the displacing fluid. Different rock types were used in this study that cover carbonates, sandstones, and dolomites. We developed an analytical workflow to separate the capillary pressure curve into capillary pressure curve for macropores and a capillary pressure curve for the micropores, and then used these pore scale Pc curves to estimate an NMR - capillary pressure - based electrical resistivity index - saturation (NMR-RI-Sw) curve for the rocks. We predicted the saturation exponent (n) for the rock samples from the NMR-RI-Sw curve. The NMR-based saturation exponent estimation method requires the transverse (T2) relaxation distribution of the rock - fluid system at various saturations. To verify the reliability of the new workflow, we performed porous plate capillary pressure and electrical resistivity measurements on the rock samples. The reliability of the results for the resistivity index curve and the saturation exponent was verified using the experimental data obtained from the SCAL method. The pore scale Pc curve was used to ascertain the drainage pattern and fluid contribution of the different pore subsystems. For bimodal rock system, the drainage mechanism can be in series, in parallel, or in series - parallel depending on the rock pore structure.


Author(s):  
Ned Horning ◽  
Julie A. Robinson ◽  
Eleanor J. Sterling ◽  
Woody Turner ◽  
Sacha Spector

There are two very different ways to envision a satellite image: as a photograph taken with a camera, or as a visual representation of spectral intensity data quantifying the light reflecting off of objects on a planet’s surface. In working with satellite images, sometimes the objective is to highlight and accent the information in the image using tools to enhance the way the image looks—the same goal that a professional photographer might have when working in the darkroom with film or using Photoshop to manipulate digital photographs. Another objective could be to manipulate the image using automated processing methods within a remote sensing package that rely on a set of equations that quantify information about reflected light. With either approach the goal is to gain information about conditions observed on the ground. At first glance, the image in Fig. 3.1 bears little resemblance to what most people would recognize as a terrestrial landscape. After all, its predominant colors are orange and bright turquoise. The use of colors in creating a visual image allows great breadth in the types of things one can identify on the ground, but also makes image interpretation an art. Even an inexperienced interpreter can make some sense of the image; more experienced interpreters with knowledge of the color scheme in use are able to determine finer details. For example, in Fig. 3.1 some of the more prominent features are a river (blue line on the left side of the image) a gradient of different vegetation (orange colors throughout the image that go from light to dark), and burn scars (turquoise patches). Fig. 3.2 shows a portion of landscape represented in the satellite image in Fig. 3.1. The red dot in Fig. 3.1 indicates the location where the photograph was taken. This photograph shows what a human observer would see looking south (in this case toward the top of the satellite image) from the point represented by the red dot. The view in the photograph differs from the satellite image in two important ways.


Sign in / Sign up

Export Citation Format

Share Document