scholarly journals Genomic characterization of a potentially novel Streptococcus species producing exopolysaccharide

3 Biotech ◽  
2019 ◽  
Vol 9 (4) ◽  
Author(s):  
Longzhan Gan ◽  
Yi Zhang ◽  
Rui Tang ◽  
Beike Liu ◽  
Shiting Wang ◽  
...  
Author(s):  
He Qi ◽  
Defeng Liu ◽  
Yang Zou ◽  
Nan Wang ◽  
Han Tian ◽  
...  

AbstractUsing the culturomics approach, we isolated a new Streptococcus species, strain C17T, from the oropharynx mucosa sample of a healthy 5-year-old child living in Shenyang, China. We studied the phenotypic, phylogenetic, and genomic characteristics of strain C17T, which was identified as a Gram-positive, coccus-shaped, non-motile, aerobic, catalase-negative bacteria. Its growth temperatures ranged from 20 to 42 °C, with optimal growth at 37 °C. Acid production could be inhibited by two sugars, trehalose and raffinose. In C17T, the reactions for enzyme lipase (C14) were confirmed to be negative, whereas those for alkaline phosphatase, α-glucosidase, and hippuric acid hydrolysis were positive. The C17T genome contained 2,189,419 base pairs (bp), with an average G+C content of 39.95%, encoding 2092 genes in total. The 16S ribosomal RNA sequence showed 99.8% similarity with the newly identified Streptococcus pseudopneumoniae ATCC BAA-960T. The main fatty acid components in C17T were C16:0, C18:1 w7c, C18:0, and C18:1 w9c, all of which can be found in other species of the Streptococcus genus. Strain C17T showed high susceptibility to clindamycin, linezolid, vancomycin, chloramphenicol, and cefepime, and moderate susceptibility to erythromycin. The obtained dDDH value between strain C17T and the closest species was 52.9%. In addition, the whole genome sequence of strain C17T had an 82.21–93.40% average nucleotide identity (ANI) with those strains of closely related Streptococcus species, indicating that the strain C17T was unique among all Streptococcus species. Based on these characteristics, we determine that C17T is a novel species, named Streptococcus symci sp. nov. (= GDMCC 1.1633 = JCM 33582).


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
AS Lima ◽  
B Lukas ◽  
J Novak ◽  
AC Figueiredo ◽  
LG Pedro ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 490-500 ◽  
Author(s):  
Justin S. Becker ◽  
Amir T. Fathi

The genomic characterization of acute myeloid leukemia (AML) by DNA sequencing has illuminated subclasses of the disease, with distinct driver mutations, that might be responsive to targeted therapies. Approximately 15-23% of AML genomes harbor mutations in one of two isoforms of isocitrate dehydrogenase (IDH1 or IDH2). These enzymes are constitutive mediators of basic cellular metabolism, but their mutated forms in cancer synthesize an abnormal metabolite, 2- hydroxyglutarate, that in turn acts as a competitive inhibitor of multiple gene regulatory enzymes. As a result, leukemic IDH mutations cause changes in genome structure and gene activity, culminating in an arrest of normal myeloid differentiation. These discoveries have motivated the development of a new class of selective small molecules with the ability to inhibit the mutant IDH enzymes while sparing normal cellular metabolism. These agents have shown promising anti-leukemic activity in animal models and early clinical trials, and are now entering Phase 3 study. This review will focus on the growing preclinical and clinical data evaluating IDH inhibitors for the treatment of IDH-mutated AML. These data suggest that inducing cellular differentiation is central to the mechanism of clinical efficacy for IDH inhibitors, while also mediating toxicity for patients who experience IDH Differentiation Syndrome. Ongoing trials are studying the efficacy of IDH inhibitors in combination with other AML therapies, both to evaluate potential synergistic combinations as well as to identify the appropriate place for IDH inhibitors within existing standard-of-care regimens.


Sign in / Sign up

Export Citation Format

Share Document