scholarly journals Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice

3 Biotech ◽  
2019 ◽  
Vol 9 (6) ◽  
Author(s):  
S. Kalia ◽  
R. Rathour
Author(s):  
KD Puri ◽  
SM Shrestha ◽  
KD Joshi ◽  
GB KC

The severity of the rice blast disease (Pyricularia grisea) of both leaf and neck varies with different environment and it becomes destructive under favorable condition. The leaf and neck blast resistance and susceptible interaction of 30 different tropical rice lines were evaluated under low-, mid- and up-land conditions of Chitwan district and classified on the basis of disease severity with respect to susceptible check, Masuli. Of them, 5, 10, 12 and 3 rice lines were resistant to leaf blast, moderately resistant, moderately susceptible susceptible, respectively. Similarly, for the neck blast nine lines were resistant, thirteen moderately resistant, seven moderately susceptible and one was susceptible. The progenies from Masuli/MT4 had the highest leaf and neck blast susceptible reaction, while the most of progenies from IPB (Irradiated Pusa Basmati), KalinghaIII_IR64, Radha 32_ KIII and Masuli_IR64 were resistant, and the most promising sources against leaf and neck blast resistance. Therefore, the progenies from these parents can be used in breeding the resistant variety. Key words: Pyricularia grisea, resistance, rice lines J. Inst. Agric. Anim. Sci. 27:37-44 (2006)


2016 ◽  
Vol 164 (11-12) ◽  
pp. 936-945 ◽  
Author(s):  
Bo Lan ◽  
Ying-Qing Yang ◽  
Hong-Fan Chen ◽  
Jun-Xi Jiang ◽  
Xiang-Min Li

2014 ◽  
Vol 36 (2) ◽  
pp. 353-367 ◽  
Author(s):  
S. Ashkani ◽  
M. Y. Rafii ◽  
M. Shabanimofrad ◽  
A. Ghasemzadeh ◽  
S. A. Ravanfar ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 825 ◽  
Author(s):  
Myo San Aung Nan ◽  
Jirayoo Janto ◽  
Arthit Sribunrueang ◽  
Tidarat Monkham ◽  
Jirawat Sanitchon ◽  
...  

Glutinous rice cultivar “RD6” is well known for its fragrance and high cooking and eating qualities, and is the most popular glutinous cultivar in the north and northeastern regions of Thailand. However, it’s susceptible to blast and bacterial blight (BB) diseases. Previously, four blast resistance QTLs on chromosomes 1, 2, 11, and 12, and a single BB resistance gene xa5 pyramided to the background of the RD6 cultivar were tested for a broad spectrum of disease resistance under greenhouse conditions. In the present study, a field experiment was conducted during the rainy seasons of 2015, 2016, 2017, and 2018, across three locations, for performance evaluations of promising lines in terms of disease reaction, agronomical characteristics, grain yield, and quality attributes. The results revealed that the ILs (BC2F5 2-7-5-36, BC2F5 2-7-5-43, BC2F5 2-8-2-25, and BC2F5 6-1/15-2-11) exhibited higher level resistance to leaf blast and neck blast disease. The BC2F5 2-8-2-52 showed resistance to both blast and BB diseases and, like all ILs, exhibited superior yield compared to the original RD6. Furthermore, the agronomic traits and grain qualities were similarly displaced, and were therefore recommended as near-isogenic lines to the RD6. This clearly demonstrated that farm phenotypic selection plays an important role in achieving not only NIL resistance to diseases, but also high yield potential, as well as representing an effective way in which to enhance BB, leaf blast, and neck blast resistance in rice planting in the north and northeastern regions of Thailand.


2020 ◽  
Vol 99 (1) ◽  
Author(s):  
Haniyambadi B. Manojkumar ◽  
Chikkaballi A. Deepak ◽  
Kodihally M. Harinikumar ◽  
M. P. Rajanna ◽  
Belthur Chethana

2017 ◽  
Vol 8 (12) ◽  
Author(s):  
Ghimire P ◽  
Gopal KC ◽  
Shrestha SM ◽  
Parajuli G
Keyword(s):  

2017 ◽  
Vol 9 (4) ◽  
pp. 371-377
Author(s):  
GUT WINDARSIH ◽  
DWINITA WIKAN UTAMI

Windarsih G, Utami DW. 2017. Evaluation of neck blast resistance and agronomical performances on double haploid rice population in greenhouse and endemic field. Nusantara Bioscience 9: 371-377. Blast disease caused by fungal Pyricularia grisea Sacc. is one of the most destructive diseases of rice in the world. The development of blast-resistant rice varieties will be essential to control this disease. This research aimed (i) to compare the resistance response to neck-blast among DH lines from double cross IR54/Parekaligolara//Bio110/Markuti and the differential varieties against three selected Indonesian blast races in greenhouse, (ii) to identify the gene(s) that caused the resistance to neck-blast based on the association between the resistance response and the genotype evaluation using molecular markers linked to Pi1, Pi33, Pib, Pir4 and Pir7 genes, and (iii) to evaluate the resistance response to leaf and neck blast on DH lines in endemic field (Sukabumi) and the agronomical performance of selected DH lines in optimum field in Ciasem of Subang, West Java, Indonesia during December 2013 to March 2014. Eleven double haploid lines from double-crossing IR54/Parekaligolara//Bio110/Markuti, the differential varieties as resistant control and the US2 variety for susceptible control were observed for neck-blast resistance response to three blast races in greenhouse and endemic field (Sukabumi), while the agronomical performances were observed in field of Ciasem-Subang. The results based on the genotyping evaluation, leaf and neck blast resistance, either in greenhouse and endemic location, and the agronomical performance in field showed that 5 selected double haploid lines had leaf and neck blast resistance and good performance on field trial. Thus they are promising for use either for further testing forwarding into releasing variety or used as donor for further blast resistant breeding activities.


2015 ◽  
Vol 3 (3) ◽  
pp. 474-478 ◽  
Author(s):  
Prem Bahadur Magar ◽  
Basistha Acharya ◽  
Bishnu Pandey

Rice blast caused by Pyricularia grisea Sacc. is the important disease of rice and different fungicides against this disease were evaluated in summer 2014 at Karma Research and Development Center, Jyotinagar, Chitwan, Nepal. A susceptible rice cultivar ‘Mansuli’ was planted in randomized complete block design and fungicides viz. Tricyclazole  22% + Hexaconazole 3% SC (0.2%), Streptomycin 5% + Thiophanate Methyl 50% WP (0.15%), Prochloraz 25% EC (0.3%), Kasugamycin 2% WP (0.2%), Hexaconazole 4% + Zineb 68 % WP (0.2%) and Udaan (Hexaconazole 3% SC) (0.2%) were sprayed thrice at weekly interval starting from the booting stage. All these fungicides were found to be effective in controlling leaf and neck blast disease as compare to control one. Among them, Tricyclazole 22% + Hexaconazole 3% SC was found to be the most effective with least leaf blast severity (6.23%), neck blast incidence (8.97%), and highest percentage disease control (87.08% and 79.62% in leaf blast and neck blast respectively) and grain yield (4.23 t/ha) followed by Prochloraz 25% EC (0.3%) and Udaan (Hexaconazole 3% SC) (0.2%). It is therefore concluded that Tricyclazole 22% + Hexaconazole 3% SC fungicide could be used to control rice blast at weekly interval starting from the booting stage for three times. Int J Appl Sci Biotechnol, Vol 3(3): 474-478


Sign in / Sign up

Export Citation Format

Share Document