scholarly journals Reaction of Different Rice Lines Against Leaf and Neck Blast under Field Condition Of Chitwan Valley

Author(s):  
KD Puri ◽  
SM Shrestha ◽  
KD Joshi ◽  
GB KC

The severity of the rice blast disease (Pyricularia grisea) of both leaf and neck varies with different environment and it becomes destructive under favorable condition. The leaf and neck blast resistance and susceptible interaction of 30 different tropical rice lines were evaluated under low-, mid- and up-land conditions of Chitwan district and classified on the basis of disease severity with respect to susceptible check, Masuli. Of them, 5, 10, 12 and 3 rice lines were resistant to leaf blast, moderately resistant, moderately susceptible susceptible, respectively. Similarly, for the neck blast nine lines were resistant, thirteen moderately resistant, seven moderately susceptible and one was susceptible. The progenies from Masuli/MT4 had the highest leaf and neck blast susceptible reaction, while the most of progenies from IPB (Irradiated Pusa Basmati), KalinghaIII_IR64, Radha 32_ KIII and Masuli_IR64 were resistant, and the most promising sources against leaf and neck blast resistance. Therefore, the progenies from these parents can be used in breeding the resistant variety. Key words: Pyricularia grisea, resistance, rice lines J. Inst. Agric. Anim. Sci. 27:37-44 (2006)

2015 ◽  
Vol 3 (3) ◽  
pp. 474-478 ◽  
Author(s):  
Prem Bahadur Magar ◽  
Basistha Acharya ◽  
Bishnu Pandey

Rice blast caused by Pyricularia grisea Sacc. is the important disease of rice and different fungicides against this disease were evaluated in summer 2014 at Karma Research and Development Center, Jyotinagar, Chitwan, Nepal. A susceptible rice cultivar ‘Mansuli’ was planted in randomized complete block design and fungicides viz. Tricyclazole  22% + Hexaconazole 3% SC (0.2%), Streptomycin 5% + Thiophanate Methyl 50% WP (0.15%), Prochloraz 25% EC (0.3%), Kasugamycin 2% WP (0.2%), Hexaconazole 4% + Zineb 68 % WP (0.2%) and Udaan (Hexaconazole 3% SC) (0.2%) were sprayed thrice at weekly interval starting from the booting stage. All these fungicides were found to be effective in controlling leaf and neck blast disease as compare to control one. Among them, Tricyclazole 22% + Hexaconazole 3% SC was found to be the most effective with least leaf blast severity (6.23%), neck blast incidence (8.97%), and highest percentage disease control (87.08% and 79.62% in leaf blast and neck blast respectively) and grain yield (4.23 t/ha) followed by Prochloraz 25% EC (0.3%) and Udaan (Hexaconazole 3% SC) (0.2%). It is therefore concluded that Tricyclazole 22% + Hexaconazole 3% SC fungicide could be used to control rice blast at weekly interval starting from the booting stage for three times. Int J Appl Sci Biotechnol, Vol 3(3): 474-478


2021 ◽  
Author(s):  
Lili Wang ◽  
Zuobin Ma ◽  
Houxiang Kang ◽  
Shuang Gu ◽  
Zhanna Mukhina ◽  
...  

Abstract Rice blast seriously threatens rice production worldwide. Utilizing the rice blast resistance gene to breed the rice blast resistant varieties is one of the best ways to control rice blast disease. Using a map-based cloning strategy, here, we cloned a novel rice blast resistance gene, Pi65 from the resistant variety GangYu129 (abbreviated GY129, O. sativa japonica ). Overexpression of Pi65 in the susceptible variety LiaoXing1 (abbreviated LX1, O. sativa japonica ) enhanced rice blast resistance, while knockout of Pi65 in GY129 resulted in susceptible to rice blast disease. Pi65 encodes two transmembrane domains, with 15 LRR domains and one serine/threonine protein kinase catalytic domain, conferring resistance to isolates of M. oryzae collected from northeast China. There are sixteen amino acids differences between the Pi65 resistance and susceptible alleles. Compared with the Pi65 resistant allele, the susceptible allele deleted one LRR domain. Pi65 was constitutively expressed in whole plants, and it could be induce expressed in the early stage of M. oryzae infection . Transcriptome analysis revealed that numerous genes associated with disease resistance were specifically upregulated in GY129 24-hour post inoculation (HPI), on the contrary, the photosynthesis-and carbohydrate metabolism-related genes were particularly downregulated 24 HPI, demonstrating that the disease resistance associated genes has been activated in GY129 (carrying Pi65 ) after rice blast fungal infection, and the cellular basal and energy metabolism was inhibited simultaneously. Our study provides genetic resources for improving rice blast resistance as well as enriches the study of rice blast resistance mechanisms.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 825 ◽  
Author(s):  
Myo San Aung Nan ◽  
Jirayoo Janto ◽  
Arthit Sribunrueang ◽  
Tidarat Monkham ◽  
Jirawat Sanitchon ◽  
...  

Glutinous rice cultivar “RD6” is well known for its fragrance and high cooking and eating qualities, and is the most popular glutinous cultivar in the north and northeastern regions of Thailand. However, it’s susceptible to blast and bacterial blight (BB) diseases. Previously, four blast resistance QTLs on chromosomes 1, 2, 11, and 12, and a single BB resistance gene xa5 pyramided to the background of the RD6 cultivar were tested for a broad spectrum of disease resistance under greenhouse conditions. In the present study, a field experiment was conducted during the rainy seasons of 2015, 2016, 2017, and 2018, across three locations, for performance evaluations of promising lines in terms of disease reaction, agronomical characteristics, grain yield, and quality attributes. The results revealed that the ILs (BC2F5 2-7-5-36, BC2F5 2-7-5-43, BC2F5 2-8-2-25, and BC2F5 6-1/15-2-11) exhibited higher level resistance to leaf blast and neck blast disease. The BC2F5 2-8-2-52 showed resistance to both blast and BB diseases and, like all ILs, exhibited superior yield compared to the original RD6. Furthermore, the agronomic traits and grain qualities were similarly displaced, and were therefore recommended as near-isogenic lines to the RD6. This clearly demonstrated that farm phenotypic selection plays an important role in achieving not only NIL resistance to diseases, but also high yield potential, as well as representing an effective way in which to enhance BB, leaf blast, and neck blast resistance in rice planting in the north and northeastern regions of Thailand.


2020 ◽  
Vol 3 (2) ◽  
pp. 276-286
Author(s):  
Pratiksha Sharma ◽  
Prem Bahadur Magar ◽  
Suraj Baidya ◽  
Ram Baran Yadaw

Blast, caused by Pyriculariagrisea (Sacc.) is the most destructive disease of rice in Nepal. To identify the sources of leaf blast resistance in rice genotypes, a field experiment was conducted under natural epiphytotic condition at National Plant Pathology Research Centre (NPPRC), Khumaltar, Lalitpur, Nepal during summer season in 2018 and 2019.A total of 128 rice genotypes in 2018 and 291during 2019 including resistant check (Sabitri) and susceptible check (Shankharika/Mansuli) were tested. Field experiment was conducted in single rod row design. Leaf blast disease assessment was done according to 0-9 scale. During 2018, 59 entries were highly resistant (Score 0), 34 resistant (Score 1), 26 moderately resistant (Score 2-3), 5 were moderately susceptible (Score 4-5), 4 susceptible (Score 6-7) and none of them were highly susceptible (Score 8-9) to leaf blast. Similarly, in 2019, 6 lines were highly resistant, 70 resistant, 196 moderately resistant, 15 lines were moderately susceptible, 4 susceptible and none of them were highly susceptible to the disease. Only, one genotype NR2179-82-2-4-1-1-1-1 (Score 1) was found resistant in both years. Similarly, genotype NR2182-22-1-3-1-1-1 (Score 2-3) was found moderately resistant. Some of the genotypes were found resistant in 2018 which become moderately resistant in 2019, they were NR2180-20-2-5-1-1-1-1, IR97135-8-3-1-3, IR98786-13-1-2-1, NR2181-139-1-3-1-1-1-1, and IR13F402. So, findings of these resistant and moderately resistant genotypes could be used in resistant source for the development of leaf blast resistant rice varieties through hybridization in future.


2004 ◽  
Vol 94 (8) ◽  
pp. 819-825 ◽  
Author(s):  
Manjul P. Singh ◽  
Fleet N. Lee ◽  
Paul A. Counce ◽  
Julia H. Gibbons

The correlation between anaerobic soil conditions and increased resistance to rice blast disease has long been observed without benefit of an adequate explanation. We researched flood depth, dissolved oxygen (DO), and ethylene relative to expression of partial blast resistance in cvs. M-201, Newbonnet, LaGrue, Mars, and Cypress. Cultivar blast index (BI) and flood DO decreased with increasing flood depth. BIs were positively correlated with DO. Total leaf blast lesions were 3.4 and 3.2 times greater in cvs. M-201 and LaGrue growing in a 5.0-μl liter-1 DO nutrient solution than when growing in a 0.1-μl liter-1 DO solution. Treatment with 0.25 mM ethephon, which releases ethylene, lowered BIs of Newbonnet, LaGrue, and Cypress growing upland when applied drench, foliar, or foliar-drench. If flooded, BIs of ethephon-treated cultivars were decreased by drench and foliar-drench applications only. BIs of upland plants were unchanged, whereas BIs of analogous flooded plants increased following treatment with 0.31 mM aminoethoxyvinylglycine (AVG), an ethylene biosynthesis inhibitor. We hypothesize that varying anaerobic conditions mediate production of phytohormones, particularly ethylene, which modify expression of inherent partial blast resistance in these rice cultivars.


2021 ◽  
Vol 7 (12) ◽  
pp. 1060
Author(s):  
Fayaz Ahmad Mohiddin ◽  
Nazir A. Bhat ◽  
Shabir H. Wani ◽  
Arif H. Bhat ◽  
Mohammad Ashraf Ahanger ◽  
...  

Rice blast is considered one of the most important fungal diseases of rice. Although diseases can be managed by using resistant cultivars, the blast pathogen has successfully overcome the single gene resistance in a short period and rendered several varieties susceptible to blast which were otherwise intended to be resistant. As such, chemical control is still the most efficient method of disease control for reducing the losses caused due to diseases. Field experiments were conducted over two successive years, 2018 and 2019, in temperate rice growing areas in northern India. All the fungicides effectively reduced leaf blast incidence and intensity, and neck blast incidence under field conditions. Tricyclazole proved most effective against rice blast and recorded a leaf blast incidence of only 8.41%. Among the combinations of fungicides, azoxystrobin + difenoconazole and azoxystrobin + tebuconazole were highly effective, recording a leaf blast incidence of 9.19 and 10.40%, respectively. The chemical combination mancozeb + carbendazim proved less effective in controlling the blast and it recorded a disease incidence of 27.61%. A similar trend was followed in neck blast incidence with tricyclazole, azoxystrobin + difenoconazole, and azoxystrobin + tebuconazole showing the highest levels of blast reductions. It is evident from the current study that the tested fungicide combinations can be used as alternatives to tricyclazole which is facing the challenges of fungicide resistance development and other environmental concerns and has been banned from use in India and other countries. The manuscript may provide a guideline of fungicide application to farmers cultivating susceptible varieties of rice.


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Lan-Lan Wang ◽  
Jing-Jing Jin ◽  
Li-Hua Li ◽  
Shao-Hong Qu

Abstract Background Long non-coding RNAs (LncRNAs) have emerged as important regulators in many physiological processes in plant. By high-throughput RNA-sequencing, many pathogen-associated LncRNAs were mapped in various plants, and some of them were proved to be involved in plant defense responses. The rice blast disease caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases in rice. However, M. oryzae-induced LncRNAs in rice is yet to be studied. Findings We investigated rice LncRNAs that were associated with the rice blast fungus. Totally 83 LncRNAs were up-regulated after blast fungus infection and 78 were down-regulated. Of them, the natural antisense transcripts (NATs) were the most abundant. The expression of some LncRNAs has similar pattern with their host genes or neighboring genes, suggesting a cis function of them in regulating gene transcription level. The deferentially expressed (DE) LncRNAs and genes co-expression analysis revealed some LncRNAs were associated with genes known to be involved in pathogen resistance, and these genes were enriched in terpenoid biosynthesis and defense response by Gene Ontology (GO) enrichment analysis. Interestingly, one of up-regulated DE-intronic RNA was derived from a jasmonate (JA) biosynthetic gene, lipoxygenase RLL (LOX-RLL). Levels of JAs were significantly increased after blast fungus infection. Given that JA is known to regulate blast resistance in rice, we suggested that LncRNA may be involved in JA-mediated rice resistance to blast fungus. Conclusions This study identified blast fungus-responsive LncRNAs in rice, which provides another layer of candidates that regulate rice and blast fungus interactions.


2021 ◽  
Author(s):  
Xingyu An ◽  
Hui Zhang ◽  
Jinlu Li ◽  
Rui Yang ◽  
Qianchun Zeng ◽  
...  

Abstract Background: The molecular mechanism of durable and broad-spectrum resistance to rice blast disease in japonica rice variety is still very little known. Ziyu44, a local japonica rice variety in Yunnan Province of China, has shown durable broad-spectrum blast resistance for more than 30 years, and provides an opportunity for us to explore the molecular basis of broad-spectrum resistance to rice blast in japonica rice variety.Methods and Results: We conducted a comparative study of mycelium growth, aposporium formation, the accumulation of salicylate(SA), jasmonate(JA) and H2O2, the expression of SA- and JA-associated genes between Ziyu44 and susceptible variety Jiangnanxiangnuo (JNXN) upon M. oryzae infection. We found that appressorium formation and invasive hyphae extention were greatly inhibited in Ziyu 44 leaves compared with that in JNXN leaves. Both Ziyu 44 and JNXN plants maintained high levels of baseline SA and did not show increased accumulation of SA after inoculation with M. oryzae, while the levels of baseline JA in Ziyu 44 and JNXN plants were relatively low, and the accumulation of JA exhibited markedly increased in Ziyu 44 plants upon M. oryzae infection. The expression levels of key genes involving JA and SA signaling pathway OsCOI1b, OsNPR1, OsMPK6 as well as pathogenesis-related (PR) genes OsPR1a, OsPR1b and OsPBZ1, were markedly up-regulated in Ziyu44. Conclusions: The level of endogenous JA is critical for synchronous activation of SA and JA signaling pathway, up-regulating PR gene expression and enhancing disease resistance against rice blast in Ziyu44.


2020 ◽  
Author(s):  
Xu-Pu Li ◽  
Xiao-Chun Ma ◽  
He Wang ◽  
Yong Zhu ◽  
Xin-Xian Liu ◽  
...  

Abstract MicroRNAs (miRNAs) play essential roles in rice immunity against Magnaporthe oryzae, the causative agent of rice blast disease. Osa-miR162a targets Dicer-like 1 (DCL1) genes, which play vital roles in miRNA biogenesis and act as negative regulators in rice immunity. Here we demonstrate that Osa-miR162a improves rice immunity against M. oryzae and balances the trade-off between rice yield and resistance. Overexpression of Osa-miR162a compromises rice susceptibility to M. oryzae accompanying enhanced induction of defense-related genes and accumulation of hydrogen peroxide (H2O2). In contrast, blocking miR162 by overexpressing a target mimic of miR162 enhances susceptibility to blast fungus associating with compromised induction of defense-related gene expression and H2O2 accumulation. Moreover, the transgenic lines overexpressing Osa-miR162a display decreased seed setting rate resulting in reduced yield per plant, whereas blocking miR162 leads to an increased number of grains per panicle, resulting in increased yield per plant. Altered accumulation of miR162 had limited impact on the expression of OsDCL1. Together, our results indicate that Osa-miR162a improves rice blast resistance and plays a role in the balance of trade-off between resistance and yield.


2021 ◽  
pp. 643-680
Author(s):  
Vincent M. Were ◽  
◽  
Nicholas J. Talbot ◽  

There are important biological process involved in rice blast disease that are now well-studied during the early events in plant infection which include: the cell biology of appressorium formation, the biology of invasive growth and effector secretion, the two distinct mechanisms of effector secretion, the nature of the plant-pathogen interface, PAMP-triggered immunity modulation by secreted effectors and effector-triggered immunity and blast resistance. The devastating losses caused by the blast fungus have been documented in most grasses, but this chapter discusses the use of major resistance genes to rice blast and wheat blast disease as an emerging threat to global food security. This chapter also highlights an emerging approach to breed for durable resistance to plant pathogens using gene editing technologies with an example: CRISPR-Cas9 mutagenesis of dominant S-genes for disease control.


Sign in / Sign up

Export Citation Format

Share Document