Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source

2011 ◽  
Vol 62 (3) ◽  
pp. 987-993 ◽  
Author(s):  
Benjamas Cheirsilp ◽  
Suleeporn Kitcha ◽  
Salwa Torpee
2016 ◽  
Vol 182 (2) ◽  
pp. 495-510 ◽  
Author(s):  
Li-ping Liu ◽  
Yang Hu ◽  
Wen-yong Lou ◽  
Ning Li ◽  
Hong Wu ◽  
...  

2017 ◽  
Vol 42 (4) ◽  
pp. 1970-1976 ◽  
Author(s):  
Dennapa Sengmee ◽  
Benjamas Cheirsilp ◽  
Thanwadee Tachapattaweawrakul Suksaroge ◽  
Poonsuk Prasertsan

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Rasool Kamal ◽  
Yuxue Liu ◽  
Qiang Li ◽  
Qitian Huang ◽  
Qian Wang ◽  
...  

Abstract Background Crude glycerol as a promising feedstock for microbial lipid production contains several impurities that make it toxic stress inducer at high amount. Under stress conditions, microorganisms can accumulate l-proline as a safeguard. Herein, l-proline was assessed as an anti-stress agent in crude glycerol media. Results Crude glycerol was converted to microbial lipids by the oleaginous yeast Rhodosporidium toruloides CGMCC 2.1389 in a two-staged culture mode. The media was supplied with exogenous l-proline to improve lipid production efficiency in high crude glycerol stress. An optimal amount of 0.5 g/L l-proline increased lipid titer and lipid yield by 34% and 28%, respectively. The lipid titer of 12.2 g/L and lipid content of 64.5% with a highest lipid yield of 0.26 g/g were achieved with l-proline addition, which were far higher than those of the control, i.e., lipid titer of 9.1 g/L, lipid content of 58% and lipid yield of 0.21 g/g. Similarly, l-proline also improved cell growth and glycerol consumption. Moreover, fatty acid compositional profiles of the lipid products was found suitable as a potential feedstock for biodiesel production. Conclusion Our study suggested that exogenous l-proline improved cell growth and lipid production on crude glycerol by R. toruloides. The fact that higher lipid yield as well as glycerol consumption indicated that l-proline might act as a potential anti-stress agent for the oleaginous yeast strain.


Sign in / Sign up

Export Citation Format

Share Document